/* ---------------------------------------------------------------------------
*
- * (c) The GHC Team, 2003-2006
+ * (c) The GHC Team, 2003-2012
*
* Capabilities
*
- * A Capability represent the token required to execute STG code,
+ * A Capability represents the token required to execute STG code,
* and all the state an OS thread/task needs to run Haskell code:
* its STG registers, a pointer to its TSO, a nursery etc. During
* STG execution, a pointer to the capabilitity is kept in a
#include "STM.h"
#include "RtsUtils.h"
+#include <string.h>
+
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
nat n_capabilities = 0;
-Capability *capabilities = NULL;
+nat enabled_capabilities = 0;
+
+// The array of Capabilities. It's important that when we need
+// to allocate more Capabilities we don't have to move the existing
+// Capabilities, because there may be pointers to them in use
+// (e.g. threads in waitForReturnCapability(), see #8209), so this is
+// an array of Capability* rather than an array of Capability.
+Capability **capabilities = NULL;
// Holds the Capability which last became free. This is used so that
// an in-call has a chance of quickly finding a free Capability.
// locking, so we don't do that.
Capability *last_free_capability = NULL;
-/* GC indicator, in scope for the scheduler, init'ed to false */
-volatile StgWord waiting_for_gc = 0;
+/*
+ * Indicates that the RTS wants to synchronise all the Capabilities
+ * for some reason. All Capabilities should stop and return to the
+ * scheduler.
+ */
+volatile StgWord pending_sync = 0;
/* Let foreign code get the current Capability -- assuming there is one!
* This is useful for unsafe foreign calls because they are called with
* the current Capability held, but they are not passed it. For example,
- * see see the integer-gmp package which calls allocateLocal() in its
+ * see see the integer-gmp package which calls allocate() in its
* stgAllocForGMP() function (which gets called by gmp functions).
* */
Capability * rts_unsafeGetMyCapability (void)
spark = tryStealSpark(cap->sparks);
while (spark != NULL && fizzledSpark(spark)) {
cap->spark_stats.fizzled++;
+ traceEventSparkFizzle(cap);
spark = tryStealSpark(cap->sparks);
}
if (spark != NULL) {
cap->spark_stats.converted++;
// Post event for running a spark from capability's own pool.
- traceEventRunSpark(cap, cap->r.rCurrentTSO);
+ traceEventSparkRun(cap);
return spark;
}
/* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
start at a random place instead of 0 as well. */
for ( i=0 ; i < n_capabilities ; i++ ) {
- robbed = &capabilities[i];
+ robbed = capabilities[i];
if (cap == robbed) // ourselves...
continue;
spark = tryStealSpark(robbed->sparks);
while (spark != NULL && fizzledSpark(spark)) {
cap->spark_stats.fizzled++;
+ traceEventSparkFizzle(cap);
spark = tryStealSpark(robbed->sparks);
}
if (spark == NULL && !emptySparkPoolCap(robbed)) {
if (spark != NULL) {
cap->spark_stats.converted++;
-
- traceEventStealSpark(cap, cap->r.rCurrentTSO, robbed->no);
+ traceEventSparkSteal(cap, robbed->no);
return spark;
}
nat i;
for (i=0; i < n_capabilities; i++) {
- if (!emptySparkPoolCap(&capabilities[i])) {
+ if (!emptySparkPoolCap(capabilities[i])) {
return rtsTrue;
}
}
cap->no = i;
cap->in_haskell = rtsFalse;
+ cap->idle = 0;
+ cap->disabled = rtsFalse;
cap->run_queue_hd = END_TSO_QUEUE;
cap->run_queue_tl = END_TSO_QUEUE;
cap->returning_tasks_hd = NULL;
cap->returning_tasks_tl = NULL;
cap->inbox = (Message*)END_TSO_QUEUE;
+ cap->sparks = allocSparkPool();
cap->spark_stats.created = 0;
cap->spark_stats.dud = 0;
cap->spark_stats.overflowed = 0;
cap->spark_stats.gcd = 0;
cap->spark_stats.fizzled = 0;
#endif
+ cap->total_allocated = 0;
cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
cap->f.stgGCEnter1 = (StgFunPtr)__stg_gc_enter_1;
cap->transaction_tokens = 0;
cap->context_switch = 0;
cap->pinned_object_block = NULL;
+ cap->pinned_object_blocks = NULL;
+#ifdef PROFILING
+ cap->r.rCCCS = CCS_SYSTEM;
+#else
+ cap->r.rCCCS = NULL;
+#endif
+
+ traceCapCreate(cap);
traceCapsetAssignCap(CAPSET_OSPROCESS_DEFAULT, i);
+ traceCapsetAssignCap(CAPSET_CLOCKDOMAIN_DEFAULT, i);
+#if defined(THREADED_RTS)
+ traceSparkCounters(cap);
+#endif
}
/* ---------------------------------------------------------------------------
void
initCapabilities( void )
{
- /* Declare a single capability set representing the process.
- Each capability will get added to this capset. */
+ /* Declare a couple capability sets representing the process and
+ clock domain. Each capability will get added to these capsets. */
traceCapsetCreate(CAPSET_OSPROCESS_DEFAULT, CapsetTypeOsProcess);
+ traceCapsetCreate(CAPSET_CLOCKDOMAIN_DEFAULT, CapsetTypeClockdomain);
#if defined(THREADED_RTS)
- nat i;
#ifndef REG_Base
// We can't support multiple CPUs if BaseReg is not a register
}
#endif
+ n_capabilities = 0;
+ moreCapabilities(0, RtsFlags.ParFlags.nNodes);
n_capabilities = RtsFlags.ParFlags.nNodes;
- if (n_capabilities == 1) {
- capabilities = &MainCapability;
- // THREADED_RTS must work on builds that don't have a mutable
- // BaseReg (eg. unregisterised), so in this case
- // capabilities[0] must coincide with &MainCapability.
- } else {
- capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
- "initCapabilities");
- }
-
- for (i = 0; i < n_capabilities; i++) {
- initCapability(&capabilities[i], i);
- }
-
- debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
-
#else /* !THREADED_RTS */
n_capabilities = 1;
- capabilities = &MainCapability;
+ capabilities = stgMallocBytes(sizeof(Capability*), "initCapabilities");
+ capabilities[0] = &MainCapability;
initCapability(&MainCapability, 0);
#endif
+ enabled_capabilities = n_capabilities;
+
// There are no free capabilities to begin with. We will start
// a worker Task to each Capability, which will quickly put the
// Capability on the free list when it finds nothing to do.
- last_free_capability = &capabilities[0];
+ last_free_capability = capabilities[0];
+}
+
+void
+moreCapabilities (nat from USED_IF_THREADS, nat to USED_IF_THREADS)
+{
+#if defined(THREADED_RTS)
+ nat i;
+ Capability **old_capabilities = capabilities;
+
+ capabilities = stgMallocBytes(to * sizeof(Capability*), "moreCapabilities");
+
+ if (to == 1) {
+ // THREADED_RTS must work on builds that don't have a mutable
+ // BaseReg (eg. unregisterised), so in this case
+ // capabilities[0] must coincide with &MainCapability.
+ capabilities[0] = &MainCapability;
+ initCapability(&MainCapability, 0);
+ }
+ else
+ {
+ for (i = 0; i < to; i++) {
+ if (i < from) {
+ capabilities[i] = old_capabilities[i];
+ } else {
+ capabilities[i] = stgMallocBytes(sizeof(Capability),
+ "moreCapabilities");
+ initCapability(capabilities[i], i);
+ }
+ }
+ }
+
+ debugTrace(DEBUG_sched, "allocated %d more capabilities", to - from);
+
+ if (old_capabilities != NULL) {
+ stgFree(old_capabilities);
+ }
+#endif
}
/* ----------------------------------------------------------------------------
* soon as possible.
* ------------------------------------------------------------------------- */
-void setContextSwitches(void)
+void contextSwitchAllCapabilities(void)
{
nat i;
for (i=0; i < n_capabilities; i++) {
- contextSwitchCapability(&capabilities[i]);
+ contextSwitchCapability(capabilities[i]);
+ }
+}
+
+void interruptAllCapabilities(void)
+{
+ nat i;
+ for (i=0; i < n_capabilities; i++) {
+ interruptCapability(capabilities[i]);
}
}
{
ASSERT_LOCK_HELD(&cap->lock);
ASSERT(task->cap == cap);
- debugTrace(DEBUG_sched, "passing capability %d to %s %p",
+ debugTrace(DEBUG_sched, "passing capability %d to %s %#" FMT_HexWord64,
cap->no, task->incall->tso ? "bound task" : "worker",
- (void *)task->id);
+ serialisableTaskId(task));
ACQUIRE_LOCK(&task->lock);
- task->wakeup = rtsTrue;
- // the wakeup flag is needed because signalCondition() doesn't
- // flag the condition if the thread is already runniing, but we want
- // it to be sticky.
- signalCondition(&task->cond);
+ if (task->wakeup == rtsFalse) {
+ task->wakeup = rtsTrue;
+ // the wakeup flag is needed because signalCondition() doesn't
+ // flag the condition if the thread is already runniing, but we want
+ // it to be sticky.
+ signalCondition(&task->cond);
+ }
RELEASE_LOCK(&task->lock);
}
#endif
return;
}
- if (waiting_for_gc == PENDING_GC_SEQ) {
+ // If there is a pending sync, then we should just leave the
+ // Capability free. The thread trying to sync will be about to
+ // call waitForReturnCapability().
+ if (pending_sync != 0 && pending_sync != SYNC_GC_PAR) {
last_free_capability = cap; // needed?
- debugTrace(DEBUG_sched, "GC pending, set capability %d free", cap->no);
+ debugTrace(DEBUG_sched, "sync pending, set capability %d free", cap->no);
return;
}
-
// If the next thread on the run queue is a bound thread,
// give this Capability to the appropriate Task.
- if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
+ if (!emptyRunQueue(cap) && peekRunQueue(cap)->bound) {
// Make sure we're not about to try to wake ourselves up
// ASSERT(task != cap->run_queue_hd->bound);
// assertion is false: in schedule() we force a yield after
// ThreadBlocked, but the thread may be back on the run queue
// by now.
- task = cap->run_queue_hd->bound->task;
- giveCapabilityToTask(cap,task);
+ task = peekRunQueue(cap)->bound->task;
+ giveCapabilityToTask(cap, task);
return;
}
// anything else to do, give the Capability to a worker thread.
if (always_wakeup ||
!emptyRunQueue(cap) || !emptyInbox(cap) ||
- !emptySparkPoolCap(cap) || globalWorkToDo()) {
+ (!cap->disabled && !emptySparkPoolCap(cap)) || globalWorkToDo()) {
if (cap->spare_workers) {
- giveCapabilityToTask(cap,cap->spare_workers);
+ giveCapabilityToTask(cap, cap->spare_workers);
// The worker Task pops itself from the queue;
return;
}
}
+#ifdef PROFILING
+ cap->r.rCCCS = CCS_IDLE;
+#endif
last_free_capability = cap;
debugTrace(DEBUG_sched, "freeing capability %d", cap->no);
}
#endif
/* ----------------------------------------------------------------------------
- * waitForReturnCapability( Task *task )
+ * waitForReturnCapability (Capability **pCap, Task *task)
*
* Purpose: when an OS thread returns from an external call,
* it calls waitForReturnCapability() (via Schedule.resumeThread())
// otherwise, search for a free capability
cap = NULL;
for (i = 0; i < n_capabilities; i++) {
- if (!capabilities[i].running_task) {
- cap = &capabilities[i];
+ if (!capabilities[i]->running_task) {
+ cap = capabilities[i];
break;
}
}
}
- ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
+#ifdef PROFILING
+ cap->r.rCCCS = CCS_SYSTEM;
+#endif
+
+ ASSERT_FULL_CAPABILITY_INVARIANTS(cap, task);
debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
* yieldCapability
* ------------------------------------------------------------------------- */
-void
-yieldCapability (Capability** pCap, Task *task)
+/* See Note [GC livelock] in Schedule.c for why we have gcAllowed
+ and return the rtsBool */
+rtsBool /* Did we GC? */
+yieldCapability (Capability** pCap, Task *task, rtsBool gcAllowed)
{
Capability *cap = *pCap;
- if (waiting_for_gc == PENDING_GC_PAR) {
+ if ((pending_sync == SYNC_GC_PAR) && gcAllowed) {
traceEventGcStart(cap);
gcWorkerThread(cap);
traceEventGcEnd(cap);
- return;
+ traceSparkCounters(cap);
+ // See Note [migrated bound threads 2]
+ if (task->cap == cap) {
+ return rtsTrue;
+ }
}
debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
continue;
}
- if (task->incall->tso == NULL) {
+ if (task->cap != cap) {
+ // see Note [migrated bound threads]
+ debugTrace(DEBUG_sched,
+ "task has been migrated to cap %d", task->cap->no);
+ RELEASE_LOCK(&cap->lock);
+ continue;
+ }
+
+ if (task->incall->tso == NULL) {
ASSERT(cap->spare_workers != NULL);
// if we're not at the front of the queue, release it
// again. This is unlikely to happen.
task->next = NULL;
cap->n_spare_workers--;
}
- cap->running_task = task;
+
+ cap->running_task = task;
RELEASE_LOCK(&cap->lock);
break;
}
- debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
+ debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
ASSERT(cap->running_task == task);
+#ifdef PROFILING
+ cap->r.rCCCS = CCS_SYSTEM;
+#endif
+
*pCap = cap;
ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
- return;
+ return rtsFalse;
}
+// Note [migrated bound threads]
+//
+// There's a tricky case where:
+// - cap A is running an unbound thread T1
+// - there is a bound thread T2 at the head of the run queue on cap A
+// - T1 makes a safe foreign call, the task bound to T2 is woken up on cap A
+// - T1 returns quickly grabbing A again (T2 is still waking up on A)
+// - T1 blocks, the scheduler migrates T2 to cap B
+// - the task bound to T2 wakes up on cap B
+//
+// We take advantage of the following invariant:
+//
+// - A bound thread can only be migrated by the holder of the
+// Capability on which the bound thread currently lives. So, if we
+// hold Capabilty C, and task->cap == C, then task cannot be
+// migrated under our feet.
+
+// Note [migrated bound threads 2]
+//
+// Second tricky case;
+// - A bound Task becomes a GC thread
+// - scheduleDoGC() migrates the thread belonging to this Task,
+// because the Capability it is on is disabled
+// - after GC, gcWorkerThread() returns, but now we are
+// holding a Capability that is not the same as task->cap
+// - Hence we must check for this case and immediately give up the
+// cap we hold.
+
/* ----------------------------------------------------------------------------
* prodCapability
*
* allow the workers to stop.
*
* This function should be called when interrupted and
- * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
+ * sched_state = SCHED_SHUTTING_DOWN, thus any worker that wakes up
* will exit the scheduler and call taskStop(), and any bound thread
* that wakes up will return to its caller. Runnable threads are
* killed.
* ------------------------------------------------------------------------- */
void
-shutdownCapability (Capability *cap,
+shutdownCapability (Capability *cap USED_IF_THREADS,
Task *task USED_IF_THREADS,
rtsBool safe USED_IF_THREADS)
{
for (t = cap->spare_workers; t != NULL; t = t->next) {
if (!osThreadIsAlive(t->id)) {
debugTrace(DEBUG_sched,
- "worker thread %p has died unexpectedly", (void *)t->id);
+ "worker thread %p has died unexpectedly", (void *)(size_t)t->id);
cap->n_spare_workers--;
if (!prev) {
cap->spare_workers = t->next;
continue;
}
- traceEventShutdown(cap);
+ traceSparkCounters(cap);
RELEASE_LOCK(&cap->lock);
break;
}
// threads performing foreign calls that will eventually try to
// return via resumeThread() and attempt to grab cap->lock.
// closeMutex(&cap->lock);
-
-#endif /* THREADED_RTS */
-
- traceCapsetRemoveCap(CAPSET_OSPROCESS_DEFAULT, cap->no);
+#endif
}
void
nat i;
for (i=0; i < n_capabilities; i++) {
ASSERT(task->incall->tso == NULL);
- shutdownCapability(&capabilities[i], task, safe);
+ shutdownCapability(capabilities[i], task, safe);
}
- traceCapsetDelete(CAPSET_OSPROCESS_DEFAULT);
-
#if defined(THREADED_RTS)
ASSERT(checkSparkCountInvariant());
#endif
#if defined(THREADED_RTS)
freeSparkPool(cap->sparks);
#endif
+ traceCapsetRemoveCap(CAPSET_OSPROCESS_DEFAULT, cap->no);
+ traceCapsetRemoveCap(CAPSET_CLOCKDOMAIN_DEFAULT, cap->no);
+ traceCapDelete(cap);
}
void
#if defined(THREADED_RTS)
nat i;
for (i=0; i < n_capabilities; i++) {
- freeCapability(&capabilities[i]);
+ freeCapability(capabilities[i]);
+ if (capabilities[i] != &MainCapability)
+ stgFree(capabilities[i]);
}
#else
freeCapability(&MainCapability);
#endif
+ stgFree(capabilities);
+ traceCapsetDelete(CAPSET_OSPROCESS_DEFAULT);
+ traceCapsetDelete(CAPSET_CLOCKDOMAIN_DEFAULT);
}
/* ---------------------------------------------------------------------------
{
nat n;
for (n = 0; n < n_capabilities; n++) {
- markCapability(evac, user, &capabilities[n], rtsFalse);
+ markCapability(evac, user, capabilities[n], rtsFalse);
}
}
nat i;
for (i = 0; i < n_capabilities; i++) {
- sparks.created += capabilities[i].spark_stats.created;
- sparks.dud += capabilities[i].spark_stats.dud;
- sparks.overflowed+= capabilities[i].spark_stats.overflowed;
- sparks.converted += capabilities[i].spark_stats.converted;
- sparks.gcd += capabilities[i].spark_stats.gcd;
- sparks.fizzled += capabilities[i].spark_stats.fizzled;
- remaining += sparkPoolSize(capabilities[i].sparks);
+ sparks.created += capabilities[i]->spark_stats.created;
+ sparks.dud += capabilities[i]->spark_stats.dud;
+ sparks.overflowed+= capabilities[i]->spark_stats.overflowed;
+ sparks.converted += capabilities[i]->spark_stats.converted;
+ sparks.gcd += capabilities[i]->spark_stats.gcd;
+ sparks.fizzled += capabilities[i]->spark_stats.fizzled;
+ remaining += sparkPoolSize(capabilities[i]->sparks);
}
/* The invariant is