Move all the CoreToDo stuff into CoreMonad
[ghc.git] / compiler / simplCore / SimplUtils.lhs
index 972c0e5..20f26c2 100644 (file)
@@ -10,7 +10,7 @@ module SimplUtils (
 
        -- Inlining,
        preInlineUnconditionally, postInlineUnconditionally, 
-       activeInline, activeRule, 
+       activeUnfolding, activeUnfInRule, activeRule, 
         simplEnvForGHCi, simplEnvForRules, updModeForInlineRules,
 
        -- The continuation type
@@ -28,6 +28,7 @@ module SimplUtils (
 #include "HsVersions.h"
 
 import SimplEnv
+import CoreMonad       ( SimplifierMode(..), Tick(..) )
 import DynFlags
 import StaticFlags
 import CoreSyn
@@ -40,7 +41,7 @@ import CoreUnfold
 import Name
 import Id
 import Var     ( isCoVar )
-import NewDemand
+import Demand
 import SimplMonad
 import Type    hiding( substTy )
 import Coercion ( coercionKind )
@@ -334,7 +335,7 @@ mkArgInfo fun rules n_val_args call_cont
     vanilla_discounts, arg_discounts :: [Int]
     vanilla_discounts = repeat 0
     arg_discounts = case idUnfolding fun of
-                       CoreUnfolding {uf_guidance = UnfoldIfGoodArgs {ug_args = discounts}}
+                       CoreUnfolding {uf_guidance = UnfIfGoodArgs {ug_args = discounts}}
                              -> discounts ++ vanilla_discounts
                        _     -> vanilla_discounts
 
@@ -342,7 +343,7 @@ mkArgInfo fun rules n_val_args call_cont
     vanilla_stricts  = repeat False
 
     arg_stricts
-      = case splitStrictSig (idNewStrictness fun) of
+      = case splitStrictSig (idStrictness fun) of
          (demands, result_info)
                | not (demands `lengthExceeds` n_val_args)
                ->      -- Enough args, use the strictness given.
@@ -430,25 +431,6 @@ interestingArgContext rules call_cont
 %*                                                                     *
 %************************************************************************
 
-\begin{code}
-simplEnvForGHCi :: SimplEnv
-simplEnvForGHCi = mkSimplEnv allOffSwitchChecker $
-                  SimplGently { sm_rules = False, sm_inline = False }
-   -- Do not do any inlining, in case we expose some unboxed
-   -- tuple stuff that confuses the bytecode interpreter
-
-simplEnvForRules :: SimplEnv
-simplEnvForRules = mkSimplEnv allOffSwitchChecker $
-                   SimplGently { sm_rules = True, sm_inline = False }
-
-updModeForInlineRules :: SimplifierMode -> SimplifierMode
-updModeForInlineRules mode
-  = case mode of      
-      SimplGently {} -> mode   -- Don't modify mode if we already gentle
-      SimplPhase  {} -> SimplGently { sm_rules = True, sm_inline = True }
-       -- Simplify as much as possible, subject to the usual "gentle" rules
-\end{code}
-
 Inlining is controlled partly by the SimplifierMode switch.  This has two
 settings
        
@@ -511,33 +493,79 @@ RULES are enabled when doing "gentle" simplification.  Two reasons:
     to work in Template Haskell when simplifying
     splices, so we get simpler code for literal strings
 
-Note [Simplifying gently inside InlineRules]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-We don't do much simplification inside InlineRules (which come from
-INLINE pragmas).  It really is important to switch off inlinings
-inside such expressions.  Consider the following example
+Note [Simplifying inside InlineRules]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We must take care with simplification inside InlineRules (which come from
+INLINE pragmas).  
 
+First, consider the following example
        let f = \pq -> BIG
        in
        let g = \y -> f y y
            {-# INLINE g #-}
        in ...g...g...g...g...g...
+Now, if that's the ONLY occurrence of f, it might be inlined inside g,
+and thence copied multiple times when g is inlined. HENCE we treat
+any occurrence in an InlineRule as a multiple occurrence, not a single
+one; see OccurAnal.addRuleUsage.
+
+Second, we do want *do* to some modest rules/inlining stuff in InlineRules,
+partly to eliminate senseless crap, and partly to break the recursive knots
+generated by instance declarations.  To keep things simple, we always set 
+the phase to 'gentle' when processing InlineRules.  OK, so suppose we have
+       {-# INLINE <act> f #-}
+       f = <rhs>
+meaning "inline f in phases p where activation <act>(p) holds". 
+Then what inlinings/rules can we apply to the copy of <rhs> captured in
+f's InlineRule?  Our model is that literally <rhs> is substituted for
+f when it is inlined.  So our conservative plan (implemented by 
+updModeForInlineRules) is this:
+
+  -------------------------------------------------------------
+  When simplifying the RHS of an InlineRule,
+  If the InlineRule becomes active in phase p, then
+    if the current phase is *earlier than* p, 
+       make no inlinings or rules active when simplifying the RHS
+    otherwise 
+       set the phase to p when simplifying the RHS
+  -------------------------------------------------------------
+
+That ensures that
+
+  a) Rules/inlinings that *cease* being active before p will 
+     not apply to the InlineRule rhs, consistent with it being
+     inlined in its *original* form in phase p.
+
+  b) Rules/inlinings that only become active *after* p will
+     not apply to the InlineRule rhs, again to be consistent with
+     inlining the *original* rhs in phase p.
+
+For example, 
+       {-# INLINE f #-}
+       f x = ...g...
 
-Now, if that's the ONLY occurrence of f, it will be inlined inside g,
-and thence copied multiple times when g is inlined.  
+       {-# NOINLINE [1] g #-}
+       g y = ...
 
-This function may be inlinined in other modules, so we don't want to
-remove (by inlining) calls to functions that have specialisations, or
-that may have transformation rules in an importing scope.
+       {-# RULE h g = ... #-}
+Here we must not inline g into f's RHS, even when we get to phase 0,
+because when f is later inlined into some other module we want the
+rule for h to fire.
 
-E.g.   {-# INLINE f #-}
+Similarly, consider
+       {-# INLINE f #-}
        f x = ...g...
 
-and suppose that g is strict *and* has specialisations.  If we inline
-g's wrapper, we deny f the chance of getting the specialised version
-of g when f is inlined at some call site (perhaps in some other
-module).
+       g y = ...
+and suppose that there are auto-generated specialisations and a strictness
+wrapper for g.  The specialisations get activation AlwaysActive, and the
+strictness wrapper get activation (ActiveAfter 0).  So the strictness
+wrepper fails the test and won't be inlined into f's InlineRule. That
+means f can inline, expose the specialised call to g, so the specialisation
+rules can fire.
 
+A note about wrappers
+~~~~~~~~~~~~~~~~~~~~~
 It's also important not to inline a worker back into a wrapper.
 A wrapper looks like
        wraper = inline_me (\x -> ...worker... )
@@ -545,18 +573,43 @@ Normally, the inline_me prevents the worker getting inlined into
 the wrapper (initially, the worker's only call site!).  But,
 if the wrapper is sure to be called, the strictness analyser will
 mark it 'demanded', so when the RHS is simplified, it'll get an ArgOf
-continuation.  That's why the keep_inline predicate returns True for
-ArgOf continuations.  It shouldn't do any harm not to dissolve the
-inline-me note under these circumstances.
+continuation. 
+
+\begin{code}
+simplEnvForGHCi :: SimplEnv
+simplEnvForGHCi = mkSimplEnv allOffSwitchChecker $
+                  SimplGently { sm_rules = False, sm_inline = False }
+   -- Do not do any inlining, in case we expose some unboxed
+   -- tuple stuff that confuses the bytecode interpreter
 
-Although we do very little simplification inside an InlineRule,
-the RHS is simplified as normal.  For example:
+simplEnvForRules :: SimplEnv
+simplEnvForRules = mkSimplEnv allOffSwitchChecker $
+                   SimplGently { sm_rules = True, sm_inline = False }
 
-       all xs = foldr (&&) True xs
-       any p = all . map p  {-# INLINE any #-}
+updModeForInlineRules :: Activation -> SimplifierMode -> SimplifierMode
+-- See Note [Simplifying inside InlineRules]
+--    Treat Gentle as phase "infinity"
+--    If current_phase `earlier than` inline_rule_start_phase 
+--      then no_op
+--    else 
+--    if current_phase `same phase` inline_rule_start_phase 
+--      then current_phase   (keep gentle flags)
+--      else inline_rule_start_phase
+updModeForInlineRules inline_rule_act current_mode
+  = case inline_rule_act of
+      NeverActive     -> no_op
+      AlwaysActive    -> mk_gentle current_mode
+      ActiveBefore {} -> mk_gentle current_mode
+      ActiveAfter n   -> mk_phase n current_mode
+  where
+    no_op = SimplGently { sm_rules = False, sm_inline = False }
 
-The RHS of 'any' will get optimised and deforested; but the InlineRule
-will still mention the original RHS.
+    mk_gentle (SimplGently {}) = current_mode
+    mk_gentle _                = SimplGently { sm_rules = True, sm_inline = True }
+
+    mk_phase n (SimplPhase _ ss) = SimplPhase n ss
+    mk_phase n (SimplGently {})  = SimplPhase n ["gentle-rules"]
+\end{code}
 
 
 preInlineUnconditionally
@@ -635,11 +688,18 @@ let-float if you inline windowToViewport
 However, as usual for Gentle mode, do not inline things that are
 inactive in the intial stages.  See Note [Gentle mode].
 
+Note [Top-level botomming Ids]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Don't inline top-level Ids that are bottoming, even if they are used just
+once, because FloatOut has gone to some trouble to extract them out.
+Inlining them won't make the program run faster!
+
 \begin{code}
 preInlineUnconditionally :: SimplEnv -> TopLevelFlag -> InId -> InExpr -> Bool
 preInlineUnconditionally env top_lvl bndr rhs
-  | not active                    = False
-  | opt_SimplNoPreInlining = False
+  | not active                                      = False
+  | isTopLevel top_lvl && isBottomingId bndr = False   -- Note [Top-level bottoming Ids]
+  | opt_SimplNoPreInlining                   = False
   | otherwise = case idOccInfo bndr of
                  IAmDead                    -> True    -- Happens in ((\x.1) v)
                  OneOcc in_lam True int_cxt -> try_once in_lam int_cxt
@@ -651,12 +711,11 @@ preInlineUnconditionally env top_lvl bndr rhs
                        -- See Note [pre/postInlineUnconditionally in gentle mode]
                   SimplPhase n _ -> isActive n act
     act = idInlineActivation bndr
-
     try_once in_lam int_cxt    -- There's one textual occurrence
        | not in_lam = isNotTopLevel top_lvl || early_phase
        | otherwise  = int_cxt && canInlineInLam rhs
 
--- Be very careful before inlining inside a lambda, becuase (a) we must not 
+-- Be very careful before inlining inside a lambda, because (a) we must not 
 -- invalidate occurrence information, and (b) we want to avoid pushing a
 -- single allocation (here) into multiple allocations (inside lambda).  
 -- Inlining a *function* with a single *saturated* call would be ok, mind you.
@@ -739,12 +798,13 @@ postInlineUnconditionally
     -> Unfolding
     -> Bool
 postInlineUnconditionally env top_lvl bndr occ_info rhs unfolding
-  | not active            = False
-  | isLoopBreaker occ_info = False     -- If it's a loop-breaker of any kind, don't inline
+  | not active                 = False
+  | isLoopBreaker occ_info      = False        -- If it's a loop-breaker of any kind, don't inline
                                        -- because it might be referred to "earlier"
-  | isExportedId bndr      = False
-  | isInlineRule unfolding = False     -- Note [InlineRule and postInlineUnconditionally]
-  | exprIsTrivial rhs     = True
+  | isExportedId bndr           = False
+  | isStableUnfolding unfolding = False        -- Note [InlineRule and postInlineUnconditionally]
+  | exprIsTrivial rhs          = True
+  | isTopLevel top_lvl          = False        -- Note [Top level and postInlineUnconditionally]
   | otherwise
   = case occ_info of
        -- The point of examining occ_info here is that for *non-values* 
@@ -757,7 +817,8 @@ postInlineUnconditionally env top_lvl bndr occ_info rhs unfolding
        --      case v of
        --         True  -> case x of ...
        --         False -> case x of ...
-       -- I'm not sure how important this is in practice
+       -- This is very important in practice; e.g. wheel-seive1 doubles 
+       -- in allocation if you miss this out
       OneOcc in_lam _one_br int_cxt    -- OneOcc => no code-duplication issue
        ->     smallEnoughToInline unfolding    -- Small enough to dup
                        -- ToDo: consider discount on smallEnoughToInline if int_cxt is true
@@ -770,8 +831,8 @@ postInlineUnconditionally env top_lvl bndr occ_info rhs unfolding
                        -- PRINCIPLE: when we've already simplified an expression once, 
                        -- make sure that we only inline it if it's reasonably small.
 
-          &&  ((isNotTopLevel top_lvl && not in_lam) || 
-                       -- But outside a lambda, we want to be reasonably aggressive
+           && (not in_lam || 
+                       -- Outside a lambda, we want to be reasonably aggressive
                        -- about inlining into multiple branches of case
                        -- e.g. let x = <non-value> 
                        --      in case y of { C1 -> ..x..; C2 -> ..x..; C3 -> ... } 
@@ -810,27 +871,56 @@ postInlineUnconditionally env top_lvl bndr occ_info rhs unfolding
                   SimplPhase n _ -> isActive n act
     act = idInlineActivation bndr
 
-activeInline :: SimplEnv -> OutId -> Bool
-activeInline env id
-  | isNonRuleLoopBreaker (idOccInfo id)          -- Things with an INLINE pragma may have 
-                                         -- an unfolding *and* be a loop breaker
-  = False                                -- (maybe the knot is not yet untied)
-  | otherwise
+activeUnfolding :: SimplEnv -> IdUnfoldingFun
+activeUnfolding env
+  = case getMode env of
+      SimplGently { sm_inline = False } -> active_unfolding_minimal
+      SimplGently { sm_inline = True  } -> active_unfolding_gentle
+      SimplPhase n _                    -> active_unfolding n
+
+activeUnfInRule :: SimplEnv -> IdUnfoldingFun
+-- When matching in RULE, we want to "look through" an unfolding
+-- if *rules* are on, even if *inlinings* are not.  A notable example
+-- is DFuns, which really we want to match in rules like (op dfun)
+-- in gentle mode.
+activeUnfInRule env
   = case getMode env of
-      SimplGently { sm_inline = inlining_on } 
-         -> inlining_on && isEarlyActive act
-       -- See Note [Gentle mode]
-
-       -- NB: we used to have a second exception, for data con wrappers.
-       -- On the grounds that we use gentle mode for rule LHSs, and 
-       -- they match better when data con wrappers are inlined.
-       -- But that only really applies to the trivial wrappers (like (:)),
-       -- and they are now constructed as Compulsory unfoldings (in MkId)
-       -- so they'll happen anyway.
-
-      SimplPhase n _ -> isActive n act
+      SimplGently { sm_rules = False } -> active_unfolding_minimal
+      SimplGently { sm_rules = True  } -> active_unfolding_gentle
+      SimplPhase n _                   -> active_unfolding n
+
+active_unfolding_minimal :: IdUnfoldingFun
+-- Compuslory unfoldings only
+-- Ignore SimplGently, because we want to inline regardless;
+-- the Id has no top-level binding at all
+--
+-- NB: we used to have a second exception, for data con wrappers.
+-- On the grounds that we use gentle mode for rule LHSs, and 
+-- they match better when data con wrappers are inlined.
+-- But that only really applies to the trivial wrappers (like (:)),
+-- and they are now constructed as Compulsory unfoldings (in MkId)
+-- so they'll happen anyway.
+active_unfolding_minimal id
+  | isCompulsoryUnfolding unf = unf
+  | otherwise                 = NoUnfolding
   where
-    act = idInlineActivation id
+    unf = realIdUnfolding id   -- Never a loop breaker
+
+active_unfolding_gentle :: IdUnfoldingFun
+-- Anything that is early-active
+-- See Note [Gentle mode]
+active_unfolding_gentle id
+  | isEarlyActive (idInlineActivation id) = idUnfolding id
+  | otherwise                             = NoUnfolding
+      -- idUnfolding checks for loop-breakers
+      -- Things with an INLINE pragma may have 
+      -- an unfolding *and* be a loop breaker  
+      -- (maybe the knot is not yet untied)
+
+active_unfolding :: CompilerPhase -> IdUnfoldingFun
+active_unfolding n id
+  | isActive n (idInlineActivation id) = idUnfolding id
+  | otherwise                          = NoUnfolding
 
 activeRule :: DynFlags -> SimplEnv -> Maybe (Activation -> Bool)
 -- Nothing => No rules at all
@@ -845,6 +935,16 @@ activeRule dflags env
       SimplPhase n _ -> Just (isActive n)
 \end{code}
 
+Note [Top level and postInlineUnconditionally]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We don't do postInlineUnconditionally for top-level things (exept ones that
+are trivial):
+  * There is no point, because the main goal is to get rid of local
+    bindings used in multiple case branches.
+  * Doing so will inline top-level error expressions that have been
+    carefully floated out by FloatOut.  More generally, it might 
+    replace static allocation with dynamic.
+
 Note [InlineRule and postInlineUnconditionally]
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Do not do postInlineUnconditionally if the Id has an InlineRule, otherwise