Remove old GUM/GranSim code
[ghc.git] / includes / Stg.h
1 /* -----------------------------------------------------------------------------
2 *
3 * (c) The GHC Team, 1998-2004
4 *
5 * Top-level include file for everything STG-ish.
6 *
7 * This file is included *automatically* by all .hc files.
8 *
9 * NOTE: always include Stg.h *before* any other headers, because we
10 * define some register variables which must be done before any inline
11 * functions are defined (some system headers have been known to
12 * define the odd inline function).
13 *
14 * We generally try to keep as little visible as possible when
15 * compiling .hc files. So for example the definitions of the
16 * InfoTable structs, closure structs and other RTS types are not
17 * visible here. The compiler knows enough about the representations
18 * of these types to generate code which manipulates them directly
19 * with pointer arithmetic.
20 *
21 * ---------------------------------------------------------------------------*/
22
23 #ifndef STG_H
24 #define STG_H
25
26
27 /* If we include "Stg.h" directly, we're in STG code, and we therefore
28 * get all the global register variables, macros etc. that go along
29 * with that. If "Stg.h" is included via "Rts.h", we're assumed to
30 * be in vanilla C.
31 */
32 #ifndef IN_STG_CODE
33 # define IN_STG_CODE 1
34
35 // Turn on C99 for .hc code. This gives us the INFINITY and NAN
36 // constants from math.h, which we occasionally need to use in .hc (#1861)
37 # define _ISOC99_SOURCE
38 #endif
39
40 #if IN_STG_CODE == 0
41 # define NO_GLOBAL_REG_DECLS /* don't define fixed registers */
42 #endif
43
44 /* Configuration */
45 #include "ghcconfig.h"
46 #include "RtsConfig.h"
47
48 /* The code generator calls the math functions directly in .hc code.
49 NB. after configuration stuff above, because this sets #defines
50 that depend on config info, such as __USE_FILE_OFFSET64 */
51 #include <math.h>
52
53 /* -----------------------------------------------------------------------------
54 Useful definitions
55 -------------------------------------------------------------------------- */
56
57 /*
58 * The C backend like to refer to labels by just mentioning their
59 * names. Howevver, when a symbol is declared as a variable in C, the
60 * C compiler will implicitly dereference it when it occurs in source.
61 * So we must subvert this behaviour for .hc files by declaring
62 * variables as arrays, which eliminates the implicit dereference.
63 */
64 #if IN_STG_CODE
65 #define RTS_VAR(x) (x)[]
66 #define RTS_DEREF(x) (*(x))
67 #else
68 #define RTS_VAR(x) x
69 #define RTS_DEREF(x) x
70 #endif
71
72 /* bit macros
73 */
74 #define BITS_PER_BYTE 8
75 #define BITS_IN(x) (BITS_PER_BYTE * sizeof(x))
76
77 /* Compute offsets of struct fields
78 */
79 #define STG_FIELD_OFFSET(s_type, field) ((StgWord)&(((s_type*)0)->field))
80
81 /*
82 * 'Portable' inlining:
83 * INLINE_HEADER is for inline functions in header files (macros)
84 * STATIC_INLINE is for inline functions in source files
85 * EXTERN_INLINE is for functions that we want to inline sometimes
86 * (we also compile a static version of the function; see Inlines.c)
87 */
88 #if defined(__GNUC__) || defined( __INTEL_COMPILER)
89
90 # define INLINE_HEADER static inline
91 # define INLINE_ME inline
92 # define STATIC_INLINE INLINE_HEADER
93
94 // The special "extern inline" behaviour is now only supported by gcc
95 // when _GNUC_GNU_INLINE__ is defined, and you have to use
96 // __attribute__((gnu_inline)). So when we don't have this, we use
97 // ordinary static inline.
98 //
99 // Apple's gcc defines __GNUC_GNU_INLINE__ without providing
100 // gnu_inline, so we exclude MacOS X and fall through to the safe
101 // version.
102 //
103 #if defined(__GNUC_GNU_INLINE__) && !defined(__APPLE__)
104 # if defined(KEEP_INLINES)
105 # define EXTERN_INLINE inline
106 # else
107 # define EXTERN_INLINE extern inline __attribute__((gnu_inline))
108 # endif
109 #else
110 # if defined(KEEP_INLINES)
111 # define EXTERN_INLINE
112 # else
113 # define EXTERN_INLINE INLINE_HEADER
114 # endif
115 #endif
116
117 #elif defined(_MSC_VER)
118
119 # define INLINE_HEADER __inline static
120 # define INLINE_ME __inline
121 # define STATIC_INLINE INLINE_HEADER
122
123 # if defined(KEEP_INLINES)
124 # define EXTERN_INLINE __inline
125 # else
126 # define EXTERN_INLINE __inline extern
127 # endif
128
129 #else
130
131 # error "Don't know how to inline functions with your C compiler."
132
133 #endif
134
135
136 /*
137 * GCC attributes
138 */
139 #if defined(__GNUC__)
140 #define GNU_ATTRIBUTE(at) __attribute__((at))
141 #else
142 #define GNU_ATTRIBUTE(at)
143 #endif
144
145 #if __GNUC__ >= 3
146 #define GNUC3_ATTRIBUTE(at) __attribute__((at))
147 #else
148 #define GNUC3_ATTRIBUTE(at)
149 #endif
150
151 #if __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 3
152 #define GNUC_ATTR_HOT __attribute__((hot))
153 #else
154 #define GNUC_ATTR_HOT /* nothing */
155 #endif
156
157 #define STG_UNUSED GNUC3_ATTRIBUTE(__unused__)
158
159 /* -----------------------------------------------------------------------------
160 Global type definitions
161 -------------------------------------------------------------------------- */
162
163 #include "MachDeps.h"
164 #include "StgTypes.h"
165
166 /* -----------------------------------------------------------------------------
167 Shorthand forms
168 -------------------------------------------------------------------------- */
169
170 typedef StgChar C_;
171 typedef StgWord W_;
172 typedef StgWord* P_;
173 typedef P_* PP_;
174 typedef StgInt I_;
175 typedef StgAddr A_;
176 typedef const StgWord* D_;
177 typedef StgFunPtr F_;
178 typedef StgByteArray B_;
179 typedef StgClosurePtr L_;
180
181 typedef StgInt64 LI_;
182 typedef StgWord64 LW_;
183
184 #define IF_(f) static F_ GNUC3_ATTRIBUTE(used) f(void)
185 #define FN_(f) F_ f(void)
186 #define EF_(f) extern F_ f(void)
187
188 typedef StgWord StgWordArray[];
189 #define EI_(X) extern StgWordArray (X) GNU_ATTRIBUTE(aligned (8))
190 #define II_(X) static StgWordArray (X) GNU_ATTRIBUTE(aligned (8))
191
192 /* -----------------------------------------------------------------------------
193 Tail calls
194
195 This needs to be up near the top as the register line on alpha needs
196 to be before all procedures (inline & out-of-line).
197 -------------------------------------------------------------------------- */
198
199 #include "TailCalls.h"
200
201 /* -----------------------------------------------------------------------------
202 Other Stg stuff...
203 -------------------------------------------------------------------------- */
204
205 #include "StgDLL.h"
206 #include "MachRegs.h"
207 #include "Regs.h"
208
209 #include "TickyCounters.h"
210
211 #if IN_STG_CODE
212 /*
213 * This is included later for RTS sources, after definitions of
214 * StgInfoTable, StgClosure and so on.
215 */
216 #include "StgMiscClosures.h"
217 #endif
218
219 #include "SMP.h" // write_barrier() inline is required
220
221 /* -----------------------------------------------------------------------------
222 Moving Floats and Doubles
223
224 ASSIGN_FLT is for assigning a float to memory (usually the
225 stack/heap). The memory address is guaranteed to be
226 StgWord aligned (currently == sizeof(void *)).
227
228 PK_FLT is for pulling a float out of memory. The memory is
229 guaranteed to be StgWord aligned.
230 -------------------------------------------------------------------------- */
231
232 INLINE_HEADER void ASSIGN_FLT (W_ [], StgFloat);
233 INLINE_HEADER StgFloat PK_FLT (W_ []);
234
235 #if ALIGNMENT_FLOAT <= ALIGNMENT_LONG
236
237 INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src) { *(StgFloat *)p_dest = src; }
238 INLINE_HEADER StgFloat PK_FLT (W_ p_src[]) { return *(StgFloat *)p_src; }
239
240 #else /* ALIGNMENT_FLOAT > ALIGNMENT_UNSIGNED_INT */
241
242 INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src)
243 {
244 float_thing y;
245 y.f = src;
246 *p_dest = y.fu;
247 }
248
249 INLINE_HEADER StgFloat PK_FLT(W_ p_src[])
250 {
251 float_thing y;
252 y.fu = *p_src;
253 return(y.f);
254 }
255
256 #endif /* ALIGNMENT_FLOAT > ALIGNMENT_LONG */
257
258 #if ALIGNMENT_DOUBLE <= ALIGNMENT_LONG
259
260 INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble);
261 INLINE_HEADER StgDouble PK_DBL (W_ []);
262
263 INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src) { *(StgDouble *)p_dest = src; }
264 INLINE_HEADER StgDouble PK_DBL (W_ p_src[]) { return *(StgDouble *)p_src; }
265
266 #else /* ALIGNMENT_DOUBLE > ALIGNMENT_LONG */
267
268 /* Sparc uses two floating point registers to hold a double. We can
269 * write ASSIGN_DBL and PK_DBL by directly accessing the registers
270 * independently - unfortunately this code isn't writable in C, we
271 * have to use inline assembler.
272 */
273 #if sparc_HOST_ARCH
274
275 #define ASSIGN_DBL(dst0,src) \
276 { StgPtr dst = (StgPtr)(dst0); \
277 __asm__("st %2,%0\n\tst %R2,%1" : "=m" (((P_)(dst))[0]), \
278 "=m" (((P_)(dst))[1]) : "f" (src)); \
279 }
280
281 #define PK_DBL(src0) \
282 ( { StgPtr src = (StgPtr)(src0); \
283 register double d; \
284 __asm__("ld %1,%0\n\tld %2,%R0" : "=f" (d) : \
285 "m" (((P_)(src))[0]), "m" (((P_)(src))[1])); d; \
286 } )
287
288 #else /* ! sparc_HOST_ARCH */
289
290 INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble);
291 INLINE_HEADER StgDouble PK_DBL (W_ []);
292
293 typedef struct
294 { StgWord dhi;
295 StgWord dlo;
296 } unpacked_double;
297
298 typedef union
299 { StgDouble d;
300 unpacked_double du;
301 } double_thing;
302
303 INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src)
304 {
305 double_thing y;
306 y.d = src;
307 p_dest[0] = y.du.dhi;
308 p_dest[1] = y.du.dlo;
309 }
310
311 /* GCC also works with this version, but it generates
312 the same code as the previous one, and is not ANSI
313
314 #define ASSIGN_DBL( p_dest, src ) \
315 *p_dest = ((double_thing) src).du.dhi; \
316 *(p_dest+1) = ((double_thing) src).du.dlo \
317 */
318
319 INLINE_HEADER StgDouble PK_DBL(W_ p_src[])
320 {
321 double_thing y;
322 y.du.dhi = p_src[0];
323 y.du.dlo = p_src[1];
324 return(y.d);
325 }
326
327 #endif /* ! sparc_HOST_ARCH */
328
329 #endif /* ALIGNMENT_DOUBLE > ALIGNMENT_UNSIGNED_INT */
330
331
332 /* -----------------------------------------------------------------------------
333 Moving 64-bit quantities around
334
335 ASSIGN_Word64 assign an StgWord64/StgInt64 to a memory location
336 PK_Word64 load an StgWord64/StgInt64 from a amemory location
337
338 In both cases the memory location might not be 64-bit aligned.
339 -------------------------------------------------------------------------- */
340
341 #ifdef SUPPORT_LONG_LONGS
342
343 typedef struct
344 { StgWord dhi;
345 StgWord dlo;
346 } unpacked_double_word;
347
348 typedef union
349 { StgInt64 i;
350 unpacked_double_word iu;
351 } int64_thing;
352
353 typedef union
354 { StgWord64 w;
355 unpacked_double_word wu;
356 } word64_thing;
357
358 INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src)
359 {
360 word64_thing y;
361 y.w = src;
362 p_dest[0] = y.wu.dhi;
363 p_dest[1] = y.wu.dlo;
364 }
365
366 INLINE_HEADER StgWord64 PK_Word64(W_ p_src[])
367 {
368 word64_thing y;
369 y.wu.dhi = p_src[0];
370 y.wu.dlo = p_src[1];
371 return(y.w);
372 }
373
374 INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src)
375 {
376 int64_thing y;
377 y.i = src;
378 p_dest[0] = y.iu.dhi;
379 p_dest[1] = y.iu.dlo;
380 }
381
382 INLINE_HEADER StgInt64 PK_Int64(W_ p_src[])
383 {
384 int64_thing y;
385 y.iu.dhi = p_src[0];
386 y.iu.dlo = p_src[1];
387 return(y.i);
388 }
389
390 #elif SIZEOF_VOID_P == 8
391
392 INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src)
393 {
394 p_dest[0] = src;
395 }
396
397 INLINE_HEADER StgWord64 PK_Word64(W_ p_src[])
398 {
399 return p_src[0];
400 }
401
402 INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src)
403 {
404 p_dest[0] = src;
405 }
406
407 INLINE_HEADER StgInt64 PK_Int64(W_ p_src[])
408 {
409 return p_src[0];
410 }
411
412 #endif
413
414 /* -----------------------------------------------------------------------------
415 Split markers
416 -------------------------------------------------------------------------- */
417
418 #if defined(USE_SPLIT_MARKERS)
419 #if defined(LEADING_UNDERSCORE)
420 #define __STG_SPLIT_MARKER __asm__("\n___stg_split_marker:");
421 #else
422 #define __STG_SPLIT_MARKER __asm__("\n__stg_split_marker:");
423 #endif
424 #else
425 #define __STG_SPLIT_MARKER /* nothing */
426 #endif
427
428 /* -----------------------------------------------------------------------------
429 Write-combining store
430 -------------------------------------------------------------------------- */
431
432 INLINE_HEADER void
433 wcStore (StgPtr p, StgWord w)
434 {
435 #ifdef x86_64_HOST_ARCH
436 __asm__(
437 "movnti\t%1, %0"
438 : "=m" (*p)
439 : "r" (w)
440 );
441 #else
442 *p = w;
443 #endif
444 }
445
446 /* -----------------------------------------------------------------------------
447 Integer multiply with overflow
448 -------------------------------------------------------------------------- */
449
450 /* Multiply with overflow checking.
451 *
452 * This is tricky - the usual sign rules for add/subtract don't apply.
453 *
454 * On 32-bit machines we use gcc's 'long long' types, finding
455 * overflow with some careful bit-twiddling.
456 *
457 * On 64-bit machines where gcc's 'long long' type is also 64-bits,
458 * we use a crude approximation, testing whether either operand is
459 * larger than 32-bits; if neither is, then we go ahead with the
460 * multiplication.
461 *
462 * Return non-zero if there is any possibility that the signed multiply
463 * of a and b might overflow. Return zero only if you are absolutely sure
464 * that it won't overflow. If in doubt, return non-zero.
465 */
466
467 #if SIZEOF_VOID_P == 4
468
469 #ifdef WORDS_BIGENDIAN
470 #define RTS_CARRY_IDX__ 0
471 #define RTS_REM_IDX__ 1
472 #else
473 #define RTS_CARRY_IDX__ 1
474 #define RTS_REM_IDX__ 0
475 #endif
476
477 typedef union {
478 StgInt64 l;
479 StgInt32 i[2];
480 } long_long_u ;
481
482 #define mulIntMayOflo(a,b) \
483 ({ \
484 StgInt32 r, c; \
485 long_long_u z; \
486 z.l = (StgInt64)a * (StgInt64)b; \
487 r = z.i[RTS_REM_IDX__]; \
488 c = z.i[RTS_CARRY_IDX__]; \
489 if (c == 0 || c == -1) { \
490 c = ((StgWord)((a^b) ^ r)) \
491 >> (BITS_IN (I_) - 1); \
492 } \
493 c; \
494 })
495
496 /* Careful: the carry calculation above is extremely delicate. Make sure
497 * you test it thoroughly after changing it.
498 */
499
500 #else
501
502 /* Approximate version when we don't have long arithmetic (on 64-bit archs) */
503
504 /* If we have n-bit words then we have n-1 bits after accounting for the
505 * sign bit, so we can fit the result of multiplying 2 (n-1)/2-bit numbers */
506 #define HALF_POS_INT (((I_)1) << ((BITS_IN (I_) - 1) / 2))
507 #define HALF_NEG_INT (-HALF_POS_INT)
508
509 #define mulIntMayOflo(a,b) \
510 ({ \
511 I_ c; \
512 if ((I_)a <= HALF_NEG_INT || a >= HALF_POS_INT \
513 || (I_)b <= HALF_NEG_INT || b >= HALF_POS_INT) {\
514 c = 1; \
515 } else { \
516 c = 0; \
517 } \
518 c; \
519 })
520 #endif
521
522 #endif /* STG_H */