Produce new-style Cmm from the Cmm parser
[ghc.git] / includes / Cmm.h
1 /* -----------------------------------------------------------------------------
2 *
3 * (c) The University of Glasgow 2004-2012
4 *
5 * This file is included at the top of all .cmm source files (and
6 * *only* .cmm files). It defines a collection of useful macros for
7 * making .cmm code a bit less error-prone to write, and a bit easier
8 * on the eye for the reader.
9 *
10 * For the syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
11 *
12 * Accessing fields of structures defined in the RTS header files is
13 * done via automatically-generated macros in DerivedConstants.h. For
14 * example, where previously we used
15 *
16 * CurrentTSO->what_next = x
17 *
18 * in C-- we now use
19 *
20 * StgTSO_what_next(CurrentTSO) = x
21 *
22 * where the StgTSO_what_next() macro is automatically generated by
23 * mkDerivedConstants.c. If you need to access a field that doesn't
24 * already have a macro, edit that file (it's pretty self-explanatory).
25 *
26 * -------------------------------------------------------------------------- */
27
28 #ifndef CMM_H
29 #define CMM_H
30
31 /*
32 * In files that are included into both C and C-- (and perhaps
33 * Haskell) sources, we sometimes need to conditionally compile bits
34 * depending on the language. CMINUSMINUS==1 in .cmm sources:
35 */
36 #define CMINUSMINUS 1
37
38 #include "ghcconfig.h"
39
40 /* -----------------------------------------------------------------------------
41 Types
42
43 The following synonyms for C-- types are declared here:
44
45 I8, I16, I32, I64 MachRep-style names for convenience
46
47 W_ is shorthand for the word type (== StgWord)
48 F_ shorthand for float (F_ == StgFloat == C's float)
49 D_ shorthand for double (D_ == StgDouble == C's double)
50
51 CInt has the same size as an int in C on this platform
52 CLong has the same size as a long in C on this platform
53
54 --------------------------------------------------------------------------- */
55
56 #define I8 bits8
57 #define I16 bits16
58 #define I32 bits32
59 #define I64 bits64
60 #define P_ gcptr
61
62 #if SIZEOF_VOID_P == 4
63 #define W_ bits32
64 /* Maybe it's better to include MachDeps.h */
65 #define TAG_BITS 2
66 #elif SIZEOF_VOID_P == 8
67 #define W_ bits64
68 /* Maybe it's better to include MachDeps.h */
69 #define TAG_BITS 3
70 #else
71 #error Unknown word size
72 #endif
73
74 /*
75 * The RTS must sometimes UNTAG a pointer before dereferencing it.
76 * See the wiki page Commentary/Rts/HaskellExecution/PointerTagging
77 */
78 #define TAG_MASK ((1 << TAG_BITS) - 1)
79 #define UNTAG(p) (p & ~TAG_MASK)
80 #define GETTAG(p) (p & TAG_MASK)
81
82 #if SIZEOF_INT == 4
83 #define CInt bits32
84 #elif SIZEOF_INT == 8
85 #define CInt bits64
86 #else
87 #error Unknown int size
88 #endif
89
90 #if SIZEOF_LONG == 4
91 #define CLong bits32
92 #elif SIZEOF_LONG == 8
93 #define CLong bits64
94 #else
95 #error Unknown long size
96 #endif
97
98 #define F_ float32
99 #define D_ float64
100 #define L_ bits64
101
102 #define SIZEOF_StgDouble 8
103 #define SIZEOF_StgWord64 8
104
105 /* -----------------------------------------------------------------------------
106 Misc useful stuff
107 -------------------------------------------------------------------------- */
108
109 #define ccall foreign "C"
110
111 #define NULL (0::W_)
112
113 #define STRING(name,str) \
114 section "rodata" { \
115 name : bits8[] str; \
116 } \
117
118 #ifdef TABLES_NEXT_TO_CODE
119 #define RET_LBL(f) f##_info
120 #else
121 #define RET_LBL(f) f##_ret
122 #endif
123
124 #ifdef TABLES_NEXT_TO_CODE
125 #define ENTRY_LBL(f) f##_info
126 #else
127 #define ENTRY_LBL(f) f##_entry
128 #endif
129
130 /* -----------------------------------------------------------------------------
131 Byte/word macros
132
133 Everything in C-- is in byte offsets (well, most things). We use
134 some macros to allow us to express offsets in words and to try to
135 avoid byte/word confusion.
136 -------------------------------------------------------------------------- */
137
138 #define SIZEOF_W SIZEOF_VOID_P
139 #define W_MASK (SIZEOF_W-1)
140
141 #if SIZEOF_W == 4
142 #define W_SHIFT 2
143 #elif SIZEOF_W == 8
144 #define W_SHIFT 3
145 #endif
146
147 /* Converting quantities of words to bytes */
148 #define WDS(n) ((n)*SIZEOF_W)
149
150 /*
151 * Converting quantities of bytes to words
152 * NB. these work on *unsigned* values only
153 */
154 #define BYTES_TO_WDS(n) ((n) / SIZEOF_W)
155 #define ROUNDUP_BYTES_TO_WDS(n) (((n) + SIZEOF_W - 1) / SIZEOF_W)
156
157 /* TO_W_(n) converts n to W_ type from a smaller type */
158 #if SIZEOF_W == 4
159 #define TO_W_(x) %sx32(x)
160 #define HALF_W_(x) %lobits16(x)
161 #elif SIZEOF_W == 8
162 #define TO_W_(x) %sx64(x)
163 #define HALF_W_(x) %lobits32(x)
164 #endif
165
166 #if SIZEOF_INT == 4 && SIZEOF_W == 8
167 #define W_TO_INT(x) %lobits32(x)
168 #elif SIZEOF_INT == SIZEOF_W
169 #define W_TO_INT(x) (x)
170 #endif
171
172 #if SIZEOF_LONG == 4 && SIZEOF_W == 8
173 #define W_TO_LONG(x) %lobits32(x)
174 #elif SIZEOF_LONG == SIZEOF_W
175 #define W_TO_LONG(x) (x)
176 #endif
177
178 /* -----------------------------------------------------------------------------
179 Heap/stack access, and adjusting the heap/stack pointers.
180 -------------------------------------------------------------------------- */
181
182 #define Sp(n) W_[Sp + WDS(n)]
183 #define Hp(n) W_[Hp + WDS(n)]
184
185 #define Sp_adj(n) Sp = Sp + WDS(n) /* pronounced "spadge" */
186 #define Hp_adj(n) Hp = Hp + WDS(n)
187
188 /* -----------------------------------------------------------------------------
189 Assertions and Debuggery
190 -------------------------------------------------------------------------- */
191
192 #ifdef DEBUG
193 #define ASSERT(predicate) \
194 if (predicate) { \
195 /*null*/; \
196 } else { \
197 foreign "C" _assertFail(NULL, __LINE__); \
198 }
199 #else
200 #define ASSERT(p) /* nothing */
201 #endif
202
203 #ifdef DEBUG
204 #define DEBUG_ONLY(s) s
205 #else
206 #define DEBUG_ONLY(s) /* nothing */
207 #endif
208
209 /*
210 * The IF_DEBUG macro is useful for debug messages that depend on one
211 * of the RTS debug options. For example:
212 *
213 * IF_DEBUG(RtsFlags_DebugFlags_apply,
214 * foreign "C" fprintf(stderr, stg_ap_0_ret_str));
215 *
216 * Note the syntax is slightly different to the C version of this macro.
217 */
218 #ifdef DEBUG
219 #define IF_DEBUG(c,s) if (RtsFlags_DebugFlags_##c(RtsFlags) != 0::I32) { s; }
220 #else
221 #define IF_DEBUG(c,s) /* nothing */
222 #endif
223
224 /* -----------------------------------------------------------------------------
225 Entering
226
227 It isn't safe to "enter" every closure. Functions in particular
228 have no entry code as such; their entry point contains the code to
229 apply the function.
230
231 ToDo: range should end in N_CLOSURE_TYPES-1, not N_CLOSURE_TYPES,
232 but switch doesn't allow us to use exprs there yet.
233
234 If R1 points to a tagged object it points either to
235 * A constructor.
236 * A function with arity <= TAG_MASK.
237 In both cases the right thing to do is to return.
238 Note: it is rather lucky that we can use the tag bits to do this
239 for both objects. Maybe it points to a brittle design?
240
241 Indirections can contain tagged pointers, so their tag is checked.
242 -------------------------------------------------------------------------- */
243
244 #ifdef PROFILING
245
246 // When profiling, we cannot shortcut ENTER() by checking the tag,
247 // because LDV profiling relies on entering closures to mark them as
248 // "used".
249
250 #define LOAD_INFO \
251 info = %INFO_PTR(UNTAG(P1));
252
253 #define MAYBE_UNTAG(x) UNTAG(x);
254
255 #else
256
257 #define LOAD_INFO(ret,x) \
258 if (GETTAG(x) != 0) { \
259 ret(x); \
260 } \
261 info = %INFO_PTR(x);
262
263 #define MAYBE_UNTAG(x) (x) /* already untagged */
264
265 #endif
266
267 // We need two versions of ENTER():
268 // - ENTER(x) takes the closure as an argument and uses return(),
269 // for use in civilized code where the stack is handled by GHC
270 //
271 // - ENTER_NOSTACK() where the closure is in R1, and returns are
272 // explicit jumps, for use when we are doing the stack management
273 // ourselves.
274
275 #define ENTER(x) ENTER_(return,x)
276 #define ENTER_R1() ENTER_(RET_R1,R1)
277
278 #define RET_R1(x) jump %ENTRY_CODE(Sp(0)) [R1]
279
280 #define ENTER_(ret,x) \
281 again: \
282 W_ info; \
283 LOAD_INFO(ret,x) \
284 switch [INVALID_OBJECT .. N_CLOSURE_TYPES] \
285 (TO_W_( %INFO_TYPE(%STD_INFO(info)) )) { \
286 case \
287 IND, \
288 IND_PERM, \
289 IND_STATIC: \
290 { \
291 x = StgInd_indirectee(x); \
292 goto again; \
293 } \
294 case \
295 FUN, \
296 FUN_1_0, \
297 FUN_0_1, \
298 FUN_2_0, \
299 FUN_1_1, \
300 FUN_0_2, \
301 FUN_STATIC, \
302 BCO, \
303 PAP: \
304 { \
305 ret(x); \
306 } \
307 default: \
308 { \
309 x = MAYBE_UNTAG(x); \
310 jump %ENTRY_CODE(info) (x); \
311 } \
312 }
313
314 // The FUN cases almost never happen: a pointer to a non-static FUN
315 // should always be tagged. This unfortunately isn't true for the
316 // interpreter right now, which leaves untagged FUNs on the stack.
317
318 /* -----------------------------------------------------------------------------
319 Constants.
320 -------------------------------------------------------------------------- */
321
322 #include "rts/Constants.h"
323 #include "DerivedConstants.h"
324 #include "rts/storage/ClosureTypes.h"
325 #include "rts/storage/FunTypes.h"
326 #include "rts/storage/SMPClosureOps.h"
327 #include "rts/OSThreads.h"
328
329 /*
330 * Need MachRegs, because some of the RTS code is conditionally
331 * compiled based on REG_R1, REG_R2, etc.
332 */
333 #include "stg/RtsMachRegs.h"
334
335 #include "rts/prof/LDV.h"
336
337 #undef BLOCK_SIZE
338 #undef MBLOCK_SIZE
339 #include "rts/storage/Block.h" /* For Bdescr() */
340
341
342 #define MyCapability() (BaseReg - OFFSET_Capability_r)
343
344 /* -------------------------------------------------------------------------
345 Info tables
346 ------------------------------------------------------------------------- */
347
348 #if defined(PROFILING)
349 #define PROF_HDR_FIELDS(w_) \
350 w_ prof_hdr_1, \
351 w_ prof_hdr_2,
352 #else
353 #define PROF_HDR_FIELDS(w_) /* nothing */
354 #endif
355
356 /* -------------------------------------------------------------------------
357 Allocation and garbage collection
358 ------------------------------------------------------------------------- */
359
360 /*
361 * ALLOC_PRIM is for allocating memory on the heap for a primitive
362 * object. It is used all over PrimOps.cmm.
363 *
364 * We make the simplifying assumption that the "admin" part of a
365 * primitive closure is just the header when calculating sizes for
366 * ticky-ticky. It's not clear whether eg. the size field of an array
367 * should be counted as "admin", or the various fields of a BCO.
368 */
369 #define ALLOC_PRIM(bytes) \
370 HP_CHK_GEN_TICKY(bytes); \
371 TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
372 CCCS_ALLOC(bytes);
373
374 #define HEAP_CHECK(bytes,failure) \
375 Hp = Hp + bytes; \
376 if (Hp > HpLim) { HpAlloc = bytes; failure; } \
377 TICK_ALLOC_HEAP_NOCTR(bytes);
378
379 #define ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,failure) \
380 HEAP_CHECK(bytes,failure) \
381 TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
382 CCCS_ALLOC(bytes);
383
384 #define ALLOC_PRIM_P(bytes,fun,arg) \
385 ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_P(fun,arg));
386
387 #define ALLOC_PRIM_N(bytes,fun,arg) \
388 ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_N(fun,arg));
389
390 /* CCS_ALLOC wants the size in words, because ccs->mem_alloc is in words */
391 #define CCCS_ALLOC(__alloc) CCS_ALLOC(BYTES_TO_WDS(__alloc), CCCS)
392
393 #define HP_CHK_GEN_TICKY(alloc) \
394 HP_CHK_GEN(alloc); \
395 TICK_ALLOC_HEAP_NOCTR(alloc);
396
397 #define HP_CHK_P(bytes, fun, arg) \
398 HEAP_CHECK(bytes, GC_PRIM_P(fun,arg))
399
400 #define ALLOC_P_TICKY(alloc, fun, arg) \
401 HP_CHK_P(alloc); \
402 TICK_ALLOC_HEAP_NOCTR(alloc);
403
404 #define CHECK_GC() \
405 (bdescr_link(CurrentNursery) == NULL || \
406 generation_n_new_large_words(W_[g0]) >= TO_W_(CLong[large_alloc_lim]))
407
408 // allocate() allocates from the nursery, so we check to see
409 // whether the nursery is nearly empty in any function that uses
410 // allocate() - this includes many of the primops.
411 //
412 // HACK alert: the __L__ stuff is here to coax the common-block
413 // eliminator into commoning up the call stg_gc_noregs() with the same
414 // code that gets generated by a STK_CHK_GEN() in the same proc. We
415 // also need an if (0) { goto __L__; } so that the __L__ label isn't
416 // optimised away by the control-flow optimiser prior to common-block
417 // elimination (it will be optimised away later).
418 //
419 // This saves some code in gmp-wrappers.cmm where we have lots of
420 // MAYBE_GC() in the same proc as STK_CHK_GEN().
421 //
422 #define MAYBE_GC(retry) \
423 if (CHECK_GC()) { \
424 HpAlloc = 0; \
425 goto __L__; \
426 __L__: \
427 call stg_gc_noregs(); \
428 goto retry; \
429 } \
430 if (0) { goto __L__; }
431
432 #define GC_PRIM(fun) \
433 R9 = fun; \
434 jump stg_gc_prim();
435
436 #define GC_PRIM_N(fun,arg) \
437 R9 = fun; \
438 jump stg_gc_prim_n(arg);
439
440 #define GC_PRIM_P(fun,arg) \
441 R9 = fun; \
442 jump stg_gc_prim_p(arg);
443
444 #define GC_PRIM_PP(fun,arg1,arg2) \
445 R9 = fun; \
446 jump stg_gc_prim_pp(arg1,arg2);
447
448 #define MAYBE_GC_(fun) \
449 if (CHECK_GC()) { \
450 HpAlloc = 0; \
451 GC_PRIM(fun) \
452 }
453
454 #define MAYBE_GC_N(fun,arg) \
455 if (CHECK_GC()) { \
456 HpAlloc = 0; \
457 GC_PRIM_N(fun,arg) \
458 }
459
460 #define MAYBE_GC_P(fun,arg) \
461 if (CHECK_GC()) { \
462 HpAlloc = 0; \
463 GC_PRIM_P(fun,arg) \
464 }
465
466 #define MAYBE_GC_PP(fun,arg1,arg2) \
467 if (CHECK_GC()) { \
468 HpAlloc = 0; \
469 GC_PRIM_PP(fun,arg1,arg2) \
470 }
471
472 #define STK_CHK(n, fun) \
473 if (Sp - n < SpLim) { \
474 GC_PRIM(fun) \
475 }
476
477 #define STK_CHK_P(n, fun, arg) \
478 if (Sp - n < SpLim) { \
479 GC_PRIM_P(fun,arg) \
480 }
481
482 #define STK_CHK_PP(n, fun, arg1, arg2) \
483 if (Sp - n < SpLim) { \
484 GC_PRIM_PP(fun,arg1,arg2) \
485 }
486
487 #define STK_CHK_ENTER(n, closure) \
488 if (Sp - n < SpLim) { \
489 jump __stg_gc_enter_1(closure); \
490 }
491
492 // A funky heap check used by AutoApply.cmm
493
494 #define HP_CHK_NP_ASSIGN_SP0(size,f) \
495 HEAP_CHECK(size, Sp(0) = f; jump __stg_gc_enter_1 [R1];)
496
497 /* -----------------------------------------------------------------------------
498 Closure headers
499 -------------------------------------------------------------------------- */
500
501 /*
502 * This is really ugly, since we don't do the rest of StgHeader this
503 * way. The problem is that values from DerivedConstants.h cannot be
504 * dependent on the way (SMP, PROF etc.). For SIZEOF_StgHeader we get
505 * the value from GHC, but it seems like too much trouble to do that
506 * for StgThunkHeader.
507 */
508 #define SIZEOF_StgThunkHeader SIZEOF_StgHeader+SIZEOF_StgSMPThunkHeader
509
510 #define StgThunk_payload(__ptr__,__ix__) \
511 W_[__ptr__+SIZEOF_StgThunkHeader+ WDS(__ix__)]
512
513 /* -----------------------------------------------------------------------------
514 Closures
515 -------------------------------------------------------------------------- */
516
517 /* The offset of the payload of an array */
518 #define BYTE_ARR_CTS(arr) ((arr) + SIZEOF_StgArrWords)
519
520 /* The number of words allocated in an array payload */
521 #define BYTE_ARR_WDS(arr) ROUNDUP_BYTES_TO_WDS(StgArrWords_bytes(arr))
522
523 /* Getting/setting the info pointer of a closure */
524 #define SET_INFO(p,info) StgHeader_info(p) = info
525 #define GET_INFO(p) StgHeader_info(p)
526
527 /* Determine the size of an ordinary closure from its info table */
528 #define sizeW_fromITBL(itbl) \
529 SIZEOF_StgHeader + WDS(%INFO_PTRS(itbl)) + WDS(%INFO_NPTRS(itbl))
530
531 /* NB. duplicated from InfoTables.h! */
532 #define BITMAP_SIZE(bitmap) ((bitmap) & BITMAP_SIZE_MASK)
533 #define BITMAP_BITS(bitmap) ((bitmap) >> BITMAP_BITS_SHIFT)
534
535 /* Debugging macros */
536 #define LOOKS_LIKE_INFO_PTR(p) \
537 ((p) != NULL && \
538 LOOKS_LIKE_INFO_PTR_NOT_NULL(p))
539
540 #define LOOKS_LIKE_INFO_PTR_NOT_NULL(p) \
541 ( (TO_W_(%INFO_TYPE(%STD_INFO(p))) != INVALID_OBJECT) && \
542 (TO_W_(%INFO_TYPE(%STD_INFO(p))) < N_CLOSURE_TYPES))
543
544 #define LOOKS_LIKE_CLOSURE_PTR(p) (LOOKS_LIKE_INFO_PTR(GET_INFO(UNTAG(p))))
545
546 /*
547 * The layout of the StgFunInfoExtra part of an info table changes
548 * depending on TABLES_NEXT_TO_CODE. So we define field access
549 * macros which use the appropriate version here:
550 */
551 #ifdef TABLES_NEXT_TO_CODE
552 /*
553 * when TABLES_NEXT_TO_CODE, slow_apply is stored as an offset
554 * instead of the normal pointer.
555 */
556
557 #define StgFunInfoExtra_slow_apply(fun_info) \
558 (TO_W_(StgFunInfoExtraRev_slow_apply_offset(fun_info)) \
559 + (fun_info) + SIZEOF_StgFunInfoExtraRev + SIZEOF_StgInfoTable)
560
561 #define StgFunInfoExtra_fun_type(i) StgFunInfoExtraRev_fun_type(i)
562 #define StgFunInfoExtra_arity(i) StgFunInfoExtraRev_arity(i)
563 #define StgFunInfoExtra_bitmap(i) StgFunInfoExtraRev_bitmap(i)
564 #else
565 #define StgFunInfoExtra_slow_apply(i) StgFunInfoExtraFwd_slow_apply(i)
566 #define StgFunInfoExtra_fun_type(i) StgFunInfoExtraFwd_fun_type(i)
567 #define StgFunInfoExtra_arity(i) StgFunInfoExtraFwd_arity(i)
568 #define StgFunInfoExtra_bitmap(i) StgFunInfoExtraFwd_bitmap(i)
569 #endif
570
571 #define mutArrCardMask ((1 << MUT_ARR_PTRS_CARD_BITS) - 1)
572 #define mutArrPtrCardDown(i) ((i) >> MUT_ARR_PTRS_CARD_BITS)
573 #define mutArrPtrCardUp(i) (((i) + mutArrCardMask) >> MUT_ARR_PTRS_CARD_BITS)
574 #define mutArrPtrsCardWords(n) ROUNDUP_BYTES_TO_WDS(mutArrPtrCardUp(n))
575
576 #if defined(PROFILING) || (!defined(THREADED_RTS) && defined(DEBUG))
577 #define OVERWRITING_CLOSURE(c) foreign "C" overwritingClosure(c "ptr")
578 #else
579 #define OVERWRITING_CLOSURE(c) /* nothing */
580 #endif
581
582 /* -----------------------------------------------------------------------------
583 Ticky macros
584 -------------------------------------------------------------------------- */
585
586 #ifdef TICKY_TICKY
587 #define TICK_BUMP_BY(ctr,n) CLong[ctr] = CLong[ctr] + n
588 #else
589 #define TICK_BUMP_BY(ctr,n) /* nothing */
590 #endif
591
592 #define TICK_BUMP(ctr) TICK_BUMP_BY(ctr,1)
593
594 #define TICK_ENT_DYN_IND() TICK_BUMP(ENT_DYN_IND_ctr)
595 #define TICK_ENT_DYN_THK() TICK_BUMP(ENT_DYN_THK_ctr)
596 #define TICK_ENT_VIA_NODE() TICK_BUMP(ENT_VIA_NODE_ctr)
597 #define TICK_ENT_STATIC_IND() TICK_BUMP(ENT_STATIC_IND_ctr)
598 #define TICK_ENT_PERM_IND() TICK_BUMP(ENT_PERM_IND_ctr)
599 #define TICK_ENT_PAP() TICK_BUMP(ENT_PAP_ctr)
600 #define TICK_ENT_AP() TICK_BUMP(ENT_AP_ctr)
601 #define TICK_ENT_AP_STACK() TICK_BUMP(ENT_AP_STACK_ctr)
602 #define TICK_ENT_BH() TICK_BUMP(ENT_BH_ctr)
603 #define TICK_UNKNOWN_CALL() TICK_BUMP(UNKNOWN_CALL_ctr)
604 #define TICK_UPDF_PUSHED() TICK_BUMP(UPDF_PUSHED_ctr)
605 #define TICK_CATCHF_PUSHED() TICK_BUMP(CATCHF_PUSHED_ctr)
606 #define TICK_UPDF_OMITTED() TICK_BUMP(UPDF_OMITTED_ctr)
607 #define TICK_UPD_NEW_IND() TICK_BUMP(UPD_NEW_IND_ctr)
608 #define TICK_UPD_NEW_PERM_IND() TICK_BUMP(UPD_NEW_PERM_IND_ctr)
609 #define TICK_UPD_OLD_IND() TICK_BUMP(UPD_OLD_IND_ctr)
610 #define TICK_UPD_OLD_PERM_IND() TICK_BUMP(UPD_OLD_PERM_IND_ctr)
611
612 #define TICK_SLOW_CALL_FUN_TOO_FEW() TICK_BUMP(SLOW_CALL_FUN_TOO_FEW_ctr)
613 #define TICK_SLOW_CALL_FUN_CORRECT() TICK_BUMP(SLOW_CALL_FUN_CORRECT_ctr)
614 #define TICK_SLOW_CALL_FUN_TOO_MANY() TICK_BUMP(SLOW_CALL_FUN_TOO_MANY_ctr)
615 #define TICK_SLOW_CALL_PAP_TOO_FEW() TICK_BUMP(SLOW_CALL_PAP_TOO_FEW_ctr)
616 #define TICK_SLOW_CALL_PAP_CORRECT() TICK_BUMP(SLOW_CALL_PAP_CORRECT_ctr)
617 #define TICK_SLOW_CALL_PAP_TOO_MANY() TICK_BUMP(SLOW_CALL_PAP_TOO_MANY_ctr)
618
619 #define TICK_SLOW_CALL_v() TICK_BUMP(SLOW_CALL_v_ctr)
620 #define TICK_SLOW_CALL_p() TICK_BUMP(SLOW_CALL_p_ctr)
621 #define TICK_SLOW_CALL_pv() TICK_BUMP(SLOW_CALL_pv_ctr)
622 #define TICK_SLOW_CALL_pp() TICK_BUMP(SLOW_CALL_pp_ctr)
623 #define TICK_SLOW_CALL_ppp() TICK_BUMP(SLOW_CALL_ppp_ctr)
624 #define TICK_SLOW_CALL_pppp() TICK_BUMP(SLOW_CALL_pppp_ctr)
625 #define TICK_SLOW_CALL_ppppp() TICK_BUMP(SLOW_CALL_ppppp_ctr)
626 #define TICK_SLOW_CALL_pppppp() TICK_BUMP(SLOW_CALL_pppppp_ctr)
627
628 /* NOTE: TICK_HISTO_BY and TICK_HISTO
629 currently have no effect.
630 The old code for it didn't typecheck and I
631 just commented it out to get ticky to work.
632 - krc 1/2007 */
633
634 #define TICK_HISTO_BY(histo,n,i) /* nothing */
635
636 #define TICK_HISTO(histo,n) TICK_HISTO_BY(histo,n,1)
637
638 /* An unboxed tuple with n components. */
639 #define TICK_RET_UNBOXED_TUP(n) \
640 TICK_BUMP(RET_UNBOXED_TUP_ctr++); \
641 TICK_HISTO(RET_UNBOXED_TUP,n)
642
643 /*
644 * A slow call with n arguments. In the unevald case, this call has
645 * already been counted once, so don't count it again.
646 */
647 #define TICK_SLOW_CALL(n) \
648 TICK_BUMP(SLOW_CALL_ctr); \
649 TICK_HISTO(SLOW_CALL,n)
650
651 /*
652 * This slow call was found to be to an unevaluated function; undo the
653 * ticks we did in TICK_SLOW_CALL.
654 */
655 #define TICK_SLOW_CALL_UNEVALD(n) \
656 TICK_BUMP(SLOW_CALL_UNEVALD_ctr); \
657 TICK_BUMP_BY(SLOW_CALL_ctr,-1); \
658 TICK_HISTO_BY(SLOW_CALL,n,-1);
659
660 /* Updating a closure with a new CON */
661 #define TICK_UPD_CON_IN_NEW(n) \
662 TICK_BUMP(UPD_CON_IN_NEW_ctr); \
663 TICK_HISTO(UPD_CON_IN_NEW,n)
664
665 #define TICK_ALLOC_HEAP_NOCTR(n) \
666 TICK_BUMP(ALLOC_HEAP_ctr); \
667 TICK_BUMP_BY(ALLOC_HEAP_tot,n)
668
669 /* -----------------------------------------------------------------------------
670 Saving and restoring STG registers
671
672 STG registers must be saved around a C call, just in case the STG
673 register is mapped to a caller-saves machine register. Normally we
674 don't need to worry about this the code generator has already
675 loaded any live STG registers into variables for us, but in
676 hand-written low-level Cmm code where we don't know which registers
677 are live, we might have to save them all.
678 -------------------------------------------------------------------------- */
679
680 #define SAVE_STGREGS \
681 W_ r1, r2, r3, r4, r5, r6, r7, r8; \
682 F_ f1, f2, f3, f4; \
683 D_ d1, d2; \
684 L_ l1; \
685 \
686 r1 = R1; \
687 r2 = R2; \
688 r3 = R3; \
689 r4 = R4; \
690 r5 = R5; \
691 r6 = R6; \
692 r7 = R7; \
693 r8 = R8; \
694 \
695 f1 = F1; \
696 f2 = F2; \
697 f3 = F3; \
698 f4 = F4; \
699 \
700 d1 = D1; \
701 d2 = D2; \
702 \
703 l1 = L1;
704
705
706 #define RESTORE_STGREGS \
707 R1 = r1; \
708 R2 = r2; \
709 R3 = r3; \
710 R4 = r4; \
711 R5 = r5; \
712 R6 = r6; \
713 R7 = r7; \
714 R8 = r8; \
715 \
716 F1 = f1; \
717 F2 = f2; \
718 F3 = f3; \
719 F4 = f4; \
720 \
721 D1 = d1; \
722 D2 = d2; \
723 \
724 L1 = l1;
725
726 /* -----------------------------------------------------------------------------
727 Misc junk
728 -------------------------------------------------------------------------- */
729
730 #define NO_TREC stg_NO_TREC_closure
731 #define END_TSO_QUEUE stg_END_TSO_QUEUE_closure
732 #define END_INVARIANT_CHECK_QUEUE stg_END_INVARIANT_CHECK_QUEUE_closure
733
734 #define recordMutableCap(p, gen) \
735 W_ __bd; \
736 W_ mut_list; \
737 mut_list = Capability_mut_lists(MyCapability()) + WDS(gen); \
738 __bd = W_[mut_list]; \
739 if (bdescr_free(__bd) >= bdescr_start(__bd) + BLOCK_SIZE) { \
740 W_ __new_bd; \
741 ("ptr" __new_bd) = foreign "C" allocBlock_lock(); \
742 bdescr_link(__new_bd) = __bd; \
743 __bd = __new_bd; \
744 W_[mut_list] = __bd; \
745 } \
746 W_ free; \
747 free = bdescr_free(__bd); \
748 W_[free] = p; \
749 bdescr_free(__bd) = free + WDS(1);
750
751 #define recordMutable(p) \
752 P_ __p; \
753 W_ __bd; \
754 W_ __gen; \
755 __p = p; \
756 __bd = Bdescr(__p); \
757 __gen = TO_W_(bdescr_gen_no(__bd)); \
758 if (__gen > 0) { recordMutableCap(__p, __gen); }
759
760 #endif /* CMM_H */