564a20f019cb1582b6c01e285bac7dbd475cd11c
[ghc.git] / rts / Capability.c
1 /* ---------------------------------------------------------------------------
2 *
3 * (c) The GHC Team, 2003-2006
4 *
5 * Capabilities
6 *
7 * A Capability represent the token required to execute STG code,
8 * and all the state an OS thread/task needs to run Haskell code:
9 * its STG registers, a pointer to its TSO, a nursery etc. During
10 * STG execution, a pointer to the capabilitity is kept in a
11 * register (BaseReg; actually it is a pointer to cap->r).
12 *
13 * Only in an THREADED_RTS build will there be multiple capabilities,
14 * for non-threaded builds there is only one global capability, namely
15 * MainCapability.
16 *
17 * --------------------------------------------------------------------------*/
18
19 #include "PosixSource.h"
20 #include "Rts.h"
21 #include "RtsUtils.h"
22 #include "RtsFlags.h"
23 #include "STM.h"
24 #include "OSThreads.h"
25 #include "Capability.h"
26 #include "Schedule.h"
27 #include "Sparks.h"
28 #include "Trace.h"
29
30 // one global capability, this is the Capability for non-threaded
31 // builds, and for +RTS -N1
32 Capability MainCapability;
33
34 nat n_capabilities;
35 Capability *capabilities = NULL;
36
37 // Holds the Capability which last became free. This is used so that
38 // an in-call has a chance of quickly finding a free Capability.
39 // Maintaining a global free list of Capabilities would require global
40 // locking, so we don't do that.
41 Capability *last_free_capability;
42
43 #if defined(THREADED_RTS)
44 STATIC_INLINE rtsBool
45 globalWorkToDo (void)
46 {
47 return blackholes_need_checking
48 || sched_state >= SCHED_INTERRUPTING
49 ;
50 }
51 #endif
52
53 #if defined(THREADED_RTS)
54 STATIC_INLINE rtsBool
55 anyWorkForMe( Capability *cap, Task *task )
56 {
57 if (task->tso != NULL) {
58 // A bound task only runs if its thread is on the run queue of
59 // the capability on which it was woken up. Otherwise, we
60 // can't be sure that we have the right capability: the thread
61 // might be woken up on some other capability, and task->cap
62 // could change under our feet.
63 return !emptyRunQueue(cap) && cap->run_queue_hd->bound == task;
64 } else {
65 // A vanilla worker task runs if either there is a lightweight
66 // thread at the head of the run queue, or the run queue is
67 // empty and (there are sparks to execute, or there is some
68 // other global condition to check, such as threads blocked on
69 // blackholes).
70 if (emptyRunQueue(cap)) {
71 return !emptySparkPoolCap(cap)
72 || !emptyWakeupQueue(cap)
73 || globalWorkToDo();
74 } else
75 return cap->run_queue_hd->bound == NULL;
76 }
77 }
78 #endif
79
80 /* -----------------------------------------------------------------------------
81 * Manage the returning_tasks lists.
82 *
83 * These functions require cap->lock
84 * -------------------------------------------------------------------------- */
85
86 #if defined(THREADED_RTS)
87 STATIC_INLINE void
88 newReturningTask (Capability *cap, Task *task)
89 {
90 ASSERT_LOCK_HELD(&cap->lock);
91 ASSERT(task->return_link == NULL);
92 if (cap->returning_tasks_hd) {
93 ASSERT(cap->returning_tasks_tl->return_link == NULL);
94 cap->returning_tasks_tl->return_link = task;
95 } else {
96 cap->returning_tasks_hd = task;
97 }
98 cap->returning_tasks_tl = task;
99 }
100
101 STATIC_INLINE Task *
102 popReturningTask (Capability *cap)
103 {
104 ASSERT_LOCK_HELD(&cap->lock);
105 Task *task;
106 task = cap->returning_tasks_hd;
107 ASSERT(task);
108 cap->returning_tasks_hd = task->return_link;
109 if (!cap->returning_tasks_hd) {
110 cap->returning_tasks_tl = NULL;
111 }
112 task->return_link = NULL;
113 return task;
114 }
115 #endif
116
117 /* ----------------------------------------------------------------------------
118 * Initialisation
119 *
120 * The Capability is initially marked not free.
121 * ------------------------------------------------------------------------- */
122
123 static void
124 initCapability( Capability *cap, nat i )
125 {
126 nat g;
127
128 cap->no = i;
129 cap->in_haskell = rtsFalse;
130
131 cap->run_queue_hd = END_TSO_QUEUE;
132 cap->run_queue_tl = END_TSO_QUEUE;
133
134 #if defined(THREADED_RTS)
135 initMutex(&cap->lock);
136 cap->running_task = NULL; // indicates cap is free
137 cap->spare_workers = NULL;
138 cap->suspended_ccalling_tasks = NULL;
139 cap->returning_tasks_hd = NULL;
140 cap->returning_tasks_tl = NULL;
141 cap->wakeup_queue_hd = END_TSO_QUEUE;
142 cap->wakeup_queue_tl = END_TSO_QUEUE;
143 #endif
144
145 cap->f.stgGCEnter1 = (F_)__stg_gc_enter_1;
146 cap->f.stgGCFun = (F_)__stg_gc_fun;
147
148 cap->mut_lists = stgMallocBytes(sizeof(bdescr *) *
149 RtsFlags.GcFlags.generations,
150 "initCapability");
151
152 for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
153 cap->mut_lists[g] = NULL;
154 }
155
156 cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
157 cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
158 cap->free_trec_chunks = END_STM_CHUNK_LIST;
159 cap->free_trec_headers = NO_TREC;
160 cap->transaction_tokens = 0;
161 }
162
163 /* ---------------------------------------------------------------------------
164 * Function: initCapabilities()
165 *
166 * Purpose: set up the Capability handling. For the THREADED_RTS build,
167 * we keep a table of them, the size of which is
168 * controlled by the user via the RTS flag -N.
169 *
170 * ------------------------------------------------------------------------- */
171 void
172 initCapabilities( void )
173 {
174 #if defined(THREADED_RTS)
175 nat i;
176
177 #ifndef REG_Base
178 // We can't support multiple CPUs if BaseReg is not a register
179 if (RtsFlags.ParFlags.nNodes > 1) {
180 errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
181 RtsFlags.ParFlags.nNodes = 1;
182 }
183 #endif
184
185 n_capabilities = RtsFlags.ParFlags.nNodes;
186
187 if (n_capabilities == 1) {
188 capabilities = &MainCapability;
189 // THREADED_RTS must work on builds that don't have a mutable
190 // BaseReg (eg. unregisterised), so in this case
191 // capabilities[0] must coincide with &MainCapability.
192 } else {
193 capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
194 "initCapabilities");
195 }
196
197 for (i = 0; i < n_capabilities; i++) {
198 initCapability(&capabilities[i], i);
199 }
200
201 debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
202
203 #else /* !THREADED_RTS */
204
205 n_capabilities = 1;
206 capabilities = &MainCapability;
207 initCapability(&MainCapability, 0);
208
209 #endif
210
211 // There are no free capabilities to begin with. We will start
212 // a worker Task to each Capability, which will quickly put the
213 // Capability on the free list when it finds nothing to do.
214 last_free_capability = &capabilities[0];
215 }
216
217 /* ----------------------------------------------------------------------------
218 * Give a Capability to a Task. The task must currently be sleeping
219 * on its condition variable.
220 *
221 * Requires cap->lock (modifies cap->running_task).
222 *
223 * When migrating a Task, the migrater must take task->lock before
224 * modifying task->cap, to synchronise with the waking up Task.
225 * Additionally, the migrater should own the Capability (when
226 * migrating the run queue), or cap->lock (when migrating
227 * returning_workers).
228 *
229 * ------------------------------------------------------------------------- */
230
231 #if defined(THREADED_RTS)
232 STATIC_INLINE void
233 giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
234 {
235 ASSERT_LOCK_HELD(&cap->lock);
236 ASSERT(task->cap == cap);
237 trace(TRACE_sched | DEBUG_sched,
238 "passing capability %d to %s %p",
239 cap->no, task->tso ? "bound task" : "worker",
240 (void *)task->id);
241 ACQUIRE_LOCK(&task->lock);
242 task->wakeup = rtsTrue;
243 // the wakeup flag is needed because signalCondition() doesn't
244 // flag the condition if the thread is already runniing, but we want
245 // it to be sticky.
246 signalCondition(&task->cond);
247 RELEASE_LOCK(&task->lock);
248 }
249 #endif
250
251 /* ----------------------------------------------------------------------------
252 * Function: releaseCapability(Capability*)
253 *
254 * Purpose: Letting go of a capability. Causes a
255 * 'returning worker' thread or a 'waiting worker'
256 * to wake up, in that order.
257 * ------------------------------------------------------------------------- */
258
259 #if defined(THREADED_RTS)
260 void
261 releaseCapability_ (Capability* cap)
262 {
263 Task *task;
264
265 task = cap->running_task;
266
267 ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
268
269 cap->running_task = NULL;
270
271 // Check to see whether a worker thread can be given
272 // the go-ahead to return the result of an external call..
273 if (cap->returning_tasks_hd != NULL) {
274 giveCapabilityToTask(cap,cap->returning_tasks_hd);
275 // The Task pops itself from the queue (see waitForReturnCapability())
276 return;
277 }
278
279 // If the next thread on the run queue is a bound thread,
280 // give this Capability to the appropriate Task.
281 if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
282 // Make sure we're not about to try to wake ourselves up
283 ASSERT(task != cap->run_queue_hd->bound);
284 task = cap->run_queue_hd->bound;
285 giveCapabilityToTask(cap,task);
286 return;
287 }
288
289 if (!cap->spare_workers) {
290 // Create a worker thread if we don't have one. If the system
291 // is interrupted, we only create a worker task if there
292 // are threads that need to be completed. If the system is
293 // shutting down, we never create a new worker.
294 if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
295 debugTrace(DEBUG_sched,
296 "starting new worker on capability %d", cap->no);
297 startWorkerTask(cap, workerStart);
298 return;
299 }
300 }
301
302 // If we have an unbound thread on the run queue, or if there's
303 // anything else to do, give the Capability to a worker thread.
304 if (!emptyRunQueue(cap) || !emptyWakeupQueue(cap)
305 || !emptySparkPoolCap(cap) || globalWorkToDo()) {
306 if (cap->spare_workers) {
307 giveCapabilityToTask(cap,cap->spare_workers);
308 // The worker Task pops itself from the queue;
309 return;
310 }
311 }
312
313 last_free_capability = cap;
314 trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
315 }
316
317 void
318 releaseCapability (Capability* cap USED_IF_THREADS)
319 {
320 ACQUIRE_LOCK(&cap->lock);
321 releaseCapability_(cap);
322 RELEASE_LOCK(&cap->lock);
323 }
324
325 static void
326 releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
327 {
328 Task *task;
329
330 ACQUIRE_LOCK(&cap->lock);
331
332 task = cap->running_task;
333
334 // If the current task is a worker, save it on the spare_workers
335 // list of this Capability. A worker can mark itself as stopped,
336 // in which case it is not replaced on the spare_worker queue.
337 // This happens when the system is shutting down (see
338 // Schedule.c:workerStart()).
339 // Also, be careful to check that this task hasn't just exited
340 // Haskell to do a foreign call (task->suspended_tso).
341 if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
342 task->next = cap->spare_workers;
343 cap->spare_workers = task;
344 }
345 // Bound tasks just float around attached to their TSOs.
346
347 releaseCapability_(cap);
348
349 RELEASE_LOCK(&cap->lock);
350 }
351 #endif
352
353 /* ----------------------------------------------------------------------------
354 * waitForReturnCapability( Task *task )
355 *
356 * Purpose: when an OS thread returns from an external call,
357 * it calls waitForReturnCapability() (via Schedule.resumeThread())
358 * to wait for permission to enter the RTS & communicate the
359 * result of the external call back to the Haskell thread that
360 * made it.
361 *
362 * ------------------------------------------------------------------------- */
363 void
364 waitForReturnCapability (Capability **pCap, Task *task)
365 {
366 #if !defined(THREADED_RTS)
367
368 MainCapability.running_task = task;
369 task->cap = &MainCapability;
370 *pCap = &MainCapability;
371
372 #else
373 Capability *cap = *pCap;
374
375 if (cap == NULL) {
376 // Try last_free_capability first
377 cap = last_free_capability;
378 if (!cap->running_task) {
379 nat i;
380 // otherwise, search for a free capability
381 for (i = 0; i < n_capabilities; i++) {
382 cap = &capabilities[i];
383 if (!cap->running_task) {
384 break;
385 }
386 }
387 // Can't find a free one, use last_free_capability.
388 cap = last_free_capability;
389 }
390
391 // record the Capability as the one this Task is now assocated with.
392 task->cap = cap;
393
394 } else {
395 ASSERT(task->cap == cap);
396 }
397
398 ACQUIRE_LOCK(&cap->lock);
399
400 debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
401
402 if (!cap->running_task) {
403 // It's free; just grab it
404 cap->running_task = task;
405 RELEASE_LOCK(&cap->lock);
406 } else {
407 newReturningTask(cap,task);
408 RELEASE_LOCK(&cap->lock);
409
410 for (;;) {
411 ACQUIRE_LOCK(&task->lock);
412 // task->lock held, cap->lock not held
413 if (!task->wakeup) waitCondition(&task->cond, &task->lock);
414 cap = task->cap;
415 task->wakeup = rtsFalse;
416 RELEASE_LOCK(&task->lock);
417
418 // now check whether we should wake up...
419 ACQUIRE_LOCK(&cap->lock);
420 if (cap->running_task == NULL) {
421 if (cap->returning_tasks_hd != task) {
422 giveCapabilityToTask(cap,cap->returning_tasks_hd);
423 RELEASE_LOCK(&cap->lock);
424 continue;
425 }
426 cap->running_task = task;
427 popReturningTask(cap);
428 RELEASE_LOCK(&cap->lock);
429 break;
430 }
431 RELEASE_LOCK(&cap->lock);
432 }
433
434 }
435
436 ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
437
438 trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
439
440 *pCap = cap;
441 #endif
442 }
443
444 #if defined(THREADED_RTS)
445 /* ----------------------------------------------------------------------------
446 * yieldCapability
447 * ------------------------------------------------------------------------- */
448
449 void
450 yieldCapability (Capability** pCap, Task *task)
451 {
452 Capability *cap = *pCap;
453
454 // The fast path has no locking, if we don't enter this while loop
455
456 while ( cap->returning_tasks_hd != NULL || !anyWorkForMe(cap,task) ) {
457 debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
458
459 // We must now release the capability and wait to be woken up
460 // again.
461 task->wakeup = rtsFalse;
462 releaseCapabilityAndQueueWorker(cap);
463
464 for (;;) {
465 ACQUIRE_LOCK(&task->lock);
466 // task->lock held, cap->lock not held
467 if (!task->wakeup) waitCondition(&task->cond, &task->lock);
468 cap = task->cap;
469 task->wakeup = rtsFalse;
470 RELEASE_LOCK(&task->lock);
471
472 debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);
473
474 ACQUIRE_LOCK(&cap->lock);
475 if (cap->running_task != NULL) {
476 debugTrace(DEBUG_sched,
477 "capability %d is owned by another task", cap->no);
478 RELEASE_LOCK(&cap->lock);
479 continue;
480 }
481
482 if (task->tso == NULL) {
483 ASSERT(cap->spare_workers != NULL);
484 // if we're not at the front of the queue, release it
485 // again. This is unlikely to happen.
486 if (cap->spare_workers != task) {
487 giveCapabilityToTask(cap,cap->spare_workers);
488 RELEASE_LOCK(&cap->lock);
489 continue;
490 }
491 cap->spare_workers = task->next;
492 task->next = NULL;
493 }
494 cap->running_task = task;
495 RELEASE_LOCK(&cap->lock);
496 break;
497 }
498
499 trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
500 ASSERT(cap->running_task == task);
501 }
502
503 *pCap = cap;
504
505 ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
506
507 return;
508 }
509
510 /* ----------------------------------------------------------------------------
511 * Wake up a thread on a Capability.
512 *
513 * This is used when the current Task is running on a Capability and
514 * wishes to wake up a thread on a different Capability.
515 * ------------------------------------------------------------------------- */
516
517 void
518 wakeupThreadOnCapability (Capability *cap, StgTSO *tso)
519 {
520 ASSERT(tso->cap == cap);
521 ASSERT(tso->bound ? tso->bound->cap == cap : 1);
522 ASSERT_LOCK_HELD(&cap->lock);
523
524 tso->cap = cap;
525
526 if (cap->running_task == NULL) {
527 // nobody is running this Capability, we can add our thread
528 // directly onto the run queue and start up a Task to run it.
529 appendToRunQueue(cap,tso);
530
531 // start it up
532 cap->running_task = myTask(); // precond for releaseCapability_()
533 trace(TRACE_sched, "resuming capability %d", cap->no);
534 releaseCapability_(cap);
535 } else {
536 appendToWakeupQueue(cap,tso);
537 // someone is running on this Capability, so it cannot be
538 // freed without first checking the wakeup queue (see
539 // releaseCapability_).
540 }
541 }
542
543 void
544 wakeupThreadOnCapability_lock (Capability *cap, StgTSO *tso)
545 {
546 ACQUIRE_LOCK(&cap->lock);
547 migrateThreadToCapability (cap, tso);
548 RELEASE_LOCK(&cap->lock);
549 }
550
551 void
552 migrateThreadToCapability (Capability *cap, StgTSO *tso)
553 {
554 // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
555 if (tso->bound) {
556 ASSERT(tso->bound->cap == tso->cap);
557 tso->bound->cap = cap;
558 }
559 tso->cap = cap;
560 wakeupThreadOnCapability(cap,tso);
561 }
562
563 void
564 migrateThreadToCapability_lock (Capability *cap, StgTSO *tso)
565 {
566 ACQUIRE_LOCK(&cap->lock);
567 migrateThreadToCapability (cap, tso);
568 RELEASE_LOCK(&cap->lock);
569 }
570
571 /* ----------------------------------------------------------------------------
572 * prodCapabilities
573 *
574 * Used to indicate that the interrupted flag is now set, or some
575 * other global condition that might require waking up a Task on each
576 * Capability.
577 * ------------------------------------------------------------------------- */
578
579 static void
580 prodCapabilities(rtsBool all)
581 {
582 nat i;
583 Capability *cap;
584 Task *task;
585
586 for (i=0; i < n_capabilities; i++) {
587 cap = &capabilities[i];
588 ACQUIRE_LOCK(&cap->lock);
589 if (!cap->running_task) {
590 if (cap->spare_workers) {
591 trace(TRACE_sched, "resuming capability %d", cap->no);
592 task = cap->spare_workers;
593 ASSERT(!task->stopped);
594 giveCapabilityToTask(cap,task);
595 if (!all) {
596 RELEASE_LOCK(&cap->lock);
597 return;
598 }
599 }
600 }
601 RELEASE_LOCK(&cap->lock);
602 }
603 return;
604 }
605
606 void
607 prodAllCapabilities (void)
608 {
609 prodCapabilities(rtsTrue);
610 }
611
612 /* ----------------------------------------------------------------------------
613 * prodOneCapability
614 *
615 * Like prodAllCapabilities, but we only require a single Task to wake
616 * up in order to service some global event, such as checking for
617 * deadlock after some idle time has passed.
618 * ------------------------------------------------------------------------- */
619
620 void
621 prodOneCapability (void)
622 {
623 prodCapabilities(rtsFalse);
624 }
625
626 /* ----------------------------------------------------------------------------
627 * shutdownCapability
628 *
629 * At shutdown time, we want to let everything exit as cleanly as
630 * possible. For each capability, we let its run queue drain, and
631 * allow the workers to stop.
632 *
633 * This function should be called when interrupted and
634 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
635 * will exit the scheduler and call taskStop(), and any bound thread
636 * that wakes up will return to its caller. Runnable threads are
637 * killed.
638 *
639 * ------------------------------------------------------------------------- */
640
641 void
642 shutdownCapability (Capability *cap, Task *task)
643 {
644 nat i;
645
646 ASSERT(sched_state == SCHED_SHUTTING_DOWN);
647
648 task->cap = cap;
649
650 // Loop indefinitely until all the workers have exited and there
651 // are no Haskell threads left. We used to bail out after 50
652 // iterations of this loop, but that occasionally left a worker
653 // running which caused problems later (the closeMutex() below
654 // isn't safe, for one thing).
655
656 for (i = 0; /* i < 50 */; i++) {
657 debugTrace(DEBUG_sched,
658 "shutting down capability %d, attempt %d", cap->no, i);
659 ACQUIRE_LOCK(&cap->lock);
660 if (cap->running_task) {
661 RELEASE_LOCK(&cap->lock);
662 debugTrace(DEBUG_sched, "not owner, yielding");
663 yieldThread();
664 continue;
665 }
666 cap->running_task = task;
667
668 if (cap->spare_workers) {
669 // Look for workers that have died without removing
670 // themselves from the list; this could happen if the OS
671 // summarily killed the thread, for example. This
672 // actually happens on Windows when the system is
673 // terminating the program, and the RTS is running in a
674 // DLL.
675 Task *t, *prev;
676 prev = NULL;
677 for (t = cap->spare_workers; t != NULL; t = t->next) {
678 if (!osThreadIsAlive(t->id)) {
679 debugTrace(DEBUG_sched,
680 "worker thread %p has died unexpectedly", t->id);
681 if (!prev) {
682 cap->spare_workers = t->next;
683 } else {
684 prev->next = t->next;
685 }
686 prev = t;
687 }
688 }
689 }
690
691 if (!emptyRunQueue(cap) || cap->spare_workers) {
692 debugTrace(DEBUG_sched,
693 "runnable threads or workers still alive, yielding");
694 releaseCapability_(cap); // this will wake up a worker
695 RELEASE_LOCK(&cap->lock);
696 yieldThread();
697 continue;
698 }
699 debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
700 freeCapability(cap);
701 RELEASE_LOCK(&cap->lock);
702 break;
703 }
704 // we now have the Capability, its run queue and spare workers
705 // list are both empty.
706
707 // ToDo: we can't drop this mutex, because there might still be
708 // threads performing foreign calls that will eventually try to
709 // return via resumeThread() and attempt to grab cap->lock.
710 // closeMutex(&cap->lock);
711 }
712
713 /* ----------------------------------------------------------------------------
714 * tryGrabCapability
715 *
716 * Attempt to gain control of a Capability if it is free.
717 *
718 * ------------------------------------------------------------------------- */
719
720 rtsBool
721 tryGrabCapability (Capability *cap, Task *task)
722 {
723 if (cap->running_task != NULL) return rtsFalse;
724 ACQUIRE_LOCK(&cap->lock);
725 if (cap->running_task != NULL) {
726 RELEASE_LOCK(&cap->lock);
727 return rtsFalse;
728 }
729 task->cap = cap;
730 cap->running_task = task;
731 RELEASE_LOCK(&cap->lock);
732 return rtsTrue;
733 }
734
735
736 #endif /* THREADED_RTS */
737
738 void
739 freeCapability (Capability *cap) {
740 stgFree(cap->mut_lists);
741 #if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
742 freeSparkPool(&cap->r.rSparks);
743 #endif
744 }
745