1 {-
2 (c) The University of Glasgow 2006
3 (c) The GRASP/AQUA Project, Glasgow University, 2000
6 FunDeps - functional dependencies
8 It's better to read it as: "if we know these, then we're going to know these"
9 -}
11 {-# LANGUAGE CPP #-}
13 module FunDeps (
14 FunDepEqn(..), pprEquation,
15 improveFromInstEnv, improveFromAnother,
16 checkInstCoverage, checkFunDeps,
17 pprFundeps
18 ) where
20 #include "HsVersions.h"
22 import Name
23 import Var
24 import Class
25 import Type
26 import TcType( immSuperClasses )
27 import Unify
28 import InstEnv
29 import VarSet
30 import VarEnv
31 import Outputable
32 import ErrUtils( Validity(..), allValid )
33 import SrcLoc
34 import Util
35 import FastString
37 import Pair ( Pair(..) )
38 import Data.List ( nubBy )
39 import Data.Maybe ( isJust )
41 {-
42 ************************************************************************
43 * *
44 \subsection{Generate equations from functional dependencies}
45 * *
46 ************************************************************************
49 Each functional dependency with one variable in the RHS is responsible
50 for generating a single equality. For instance:
51 class C a b | a -> b
52 The constraints ([Wanted] C Int Bool) and [Wanted] C Int alpha
53 will generate the folloing FunDepEqn
54 FDEqn { fd_qtvs = []
55 , fd_eqs = [Pair Bool alpha]
56 , fd_pred1 = C Int Bool
57 , fd_pred2 = C Int alpha
58 , fd_loc = ... }
59 However notice that a functional dependency may have more than one variable
60 in the RHS which will create more than one pair of types in fd_eqs. Example:
61 class C a b c | a -> b c
62 [Wanted] C Int alpha alpha
63 [Wanted] C Int Bool beta
64 Will generate:
65 FDEqn { fd_qtvs = []
66 , fd_eqs = [Pair Bool alpha, Pair alpha beta]
67 , fd_pred1 = C Int Bool
68 , fd_pred2 = C Int alpha
69 , fd_loc = ... }
71 INVARIANT: Corresponding types aren't already equal
72 That is, there exists at least one non-identity equality in FDEqs.
74 Assume:
75 class C a b c | a -> b c
76 instance C Int x x
77 And: [Wanted] C Int Bool alpha
78 We will /match/ the LHS of fundep equations, producing a matching substitution
79 and create equations for the RHS sides. In our last example we'd have generated:
80 ({x}, [fd1,fd2])
81 where
82 fd1 = FDEq 1 Bool x
83 fd2 = FDEq 2 alpha x
84 To ``execute'' the equation, make fresh type variable for each tyvar in the set,
85 instantiate the two types with these fresh variables, and then unify or generate
86 a new constraint. In the above example we would generate a new unification
87 variable 'beta' for x and produce the following constraints:
88 [Wanted] (Bool ~ beta)
89 [Wanted] (alpha ~ beta)
91 Notice the subtle difference between the above class declaration and:
92 class C a b c | a -> b, a -> c
93 where we would generate:
94 ({x},[fd1]),({x},[fd2])
95 This means that the template variable would be instantiated to different
96 unification variables when producing the FD constraints.
98 Finally, the position parameters will help us rewrite the wanted constraint ``on the spot''
99 -}
101 data FunDepEqn loc
102 = FDEqn { fd_qtvs :: [TyVar] -- Instantiate these type and kind vars
103 -- to fresh unification vars,
104 -- Non-empty only for FunDepEqns arising from instance decls
106 , fd_eqs :: [Pair Type] -- Make these pairs of types equal
107 , fd_pred1 :: PredType -- The FunDepEqn arose from
108 , fd_pred2 :: PredType -- combining these two constraints
109 , fd_loc :: loc }
111 {-
112 Given a bunch of predicates that must hold, such as
114 C Int t1, C Int t2, C Bool t3, ?x::t4, ?x::t5
116 improve figures out what extra equations must hold.
117 For example, if we have
119 class C a b | a->b where ...
121 then improve will return
123 [(t1,t2), (t4,t5)]
125 NOTA BENE:
127 * improve does not iterate. It's possible that when we make
128 t1=t2, for example, that will in turn trigger a new equation.
129 This would happen if we also had
130 C t1 t7, C t2 t8
131 If t1=t2, we also get t7=t8.
133 improve does *not* do this extra step. It relies on the caller
134 doing so.
136 * The equations unify types that are not already equal. So there
137 is no effect iff the result of improve is empty
138 -}
140 instFD :: FunDep TyVar -> [TyVar] -> [Type] -> FunDep Type
141 -- (instFD fd tvs tys) returns fd instantiated with (tvs -> tys)
142 instFD (ls,rs) tvs tys
143 = (map lookup ls, map lookup rs)
144 where
145 env = zipVarEnv tvs tys
146 lookup tv = lookupVarEnv_NF env tv
148 zipAndComputeFDEqs :: (Type -> Type -> Bool) -- Discard this FDEq if true
149 -> [Type] -> [Type]
150 -> [Pair Type]
151 -- Create a list of (Type,Type) pairs from two lists of types,
152 -- making sure that the types are not already equal
155 | otherwise = Pair ty1 ty2 : zipAndComputeFDEqs discard tys1 tys2
156 zipAndComputeFDEqs _ _ _ = []
158 -- Improve a class constraint from another class constraint
159 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160 improveFromAnother :: loc
161 -> PredType -- Template item (usually given, or inert)
162 -> PredType -- Workitem [that can be improved]
163 -> [FunDepEqn loc]
164 -- Post: FDEqs always oriented from the other to the workitem
165 -- Equations have empty quantified variables
166 improveFromAnother loc pred1 pred2
167 | Just (cls1, tys1) <- getClassPredTys_maybe pred1
168 , Just (cls2, tys2) <- getClassPredTys_maybe pred2
169 , tys1 `lengthAtLeast` 2 && cls1 == cls2
170 = [ FDEqn { fd_qtvs = [], fd_eqs = eqs, fd_pred1 = pred1, fd_pred2 = pred2, fd_loc = loc }
171 | let (cls_tvs, cls_fds) = classTvsFds cls1
172 , fd <- cls_fds
173 , let (ltys1, rs1) = instFD fd cls_tvs tys1
174 (ltys2, rs2) = instFD fd cls_tvs tys2
175 , eqTypes ltys1 ltys2 -- The LHSs match
176 , let eqs = zipAndComputeFDEqs eqType rs1 rs2
177 , not (null eqs) ]
179 improveFromAnother _ _ _ = []
182 -- Improve a class constraint from instance declarations
183 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
185 pprEquation :: FunDepEqn a -> SDoc
186 pprEquation (FDEqn { fd_qtvs = qtvs, fd_eqs = pairs })
187 = vcat [ptext (sLit "forall") <+> braces (pprWithCommas ppr qtvs),
188 nest 2 (vcat [ ppr t1 <+> ptext (sLit "~") <+> ppr t2
189 | Pair t1 t2 <- pairs])]
191 improveFromInstEnv :: InstEnvs
192 -> (PredType -> SrcSpan -> loc)
193 -> PredType
194 -> [FunDepEqn loc] -- Needs to be a FunDepEqn because
195 -- of quantified variables
196 -- Post: Equations oriented from the template (matching instance) to the workitem!
197 improveFromInstEnv _inst_env _ pred
198 | not (isClassPred pred)
199 = panic "improveFromInstEnv: not a class predicate"
200 improveFromInstEnv inst_env mk_loc pred
201 | Just (cls, tys) <- getClassPredTys_maybe pred
202 , tys `lengthAtLeast` 2
203 , let (cls_tvs, cls_fds) = classTvsFds cls
204 instances = classInstances inst_env cls
205 rough_tcs = roughMatchTcs tys
206 = [ FDEqn { fd_qtvs = meta_tvs, fd_eqs = eqs
207 , fd_pred1 = p_inst, fd_pred2 = pred
208 , fd_loc = mk_loc p_inst (getSrcSpan (is_dfun ispec)) }
209 | fd <- cls_fds -- Iterate through the fundeps first,
210 -- because there often are none!
211 , let trimmed_tcs = trimRoughMatchTcs cls_tvs fd rough_tcs
212 -- Trim the rough_tcs based on the head of the fundep.
213 -- Remember that instanceCantMatch treats both argumnents
214 -- symmetrically, so it's ok to trim the rough_tcs,
215 -- rather than trimming each inst_tcs in turn
216 , ispec <- instances
217 , (meta_tvs, eqs) <- checkClsFD fd cls_tvs ispec
218 emptyVarSet tys trimmed_tcs -- NB: orientation
219 , let p_inst = mkClassPred cls (is_tys ispec)
220 ]
221 improveFromInstEnv _ _ _ = []
224 checkClsFD :: FunDep TyVar -> [TyVar] -- One functional dependency from the class
225 -> ClsInst -- An instance template
226 -> TyVarSet -> [Type] -> [Maybe Name] -- Arguments of this (C tys) predicate
227 -- TyVarSet are extra tyvars that can be instantiated
228 -> [([TyVar], [Pair Type])]
230 checkClsFD fd clas_tvs
231 (ClsInst { is_tvs = qtvs, is_tys = tys_inst, is_tcs = rough_tcs_inst })
232 extra_qtvs tys_actual rough_tcs_actual
234 -- 'qtvs' are the quantified type variables, the ones which an be instantiated
235 -- to make the types match. For example, given
236 -- class C a b | a->b where ...
237 -- instance C (Maybe x) (Tree x) where ..
238 --
239 -- and an Inst of form (C (Maybe t1) t2),
240 -- then we will call checkClsFD with
241 --
242 -- is_qtvs = {x}, is_tys = [Maybe x, Tree x]
243 -- tys_actual = [Maybe t1, t2]
244 --
245 -- We can instantiate x to t1, and then we want to force
246 -- (Tree x) [t1/x] ~ t2
247 --
248 -- This function is also used when matching two Insts (rather than an Inst
249 -- against an instance decl. In that case, qtvs is empty, and we are doing
250 -- an equality check
251 --
252 -- This function is also used by InstEnv.badFunDeps, which needs to *unify*
253 -- For the one-sided matching case, the qtvs are just from the template,
254 -- so we get matching
256 | instanceCantMatch rough_tcs_inst rough_tcs_actual
257 = [] -- Filter out ones that can't possibly match,
259 | otherwise
260 = ASSERT2( length tys_inst == length tys_actual &&
261 length tys_inst == length clas_tvs
262 , ppr tys_inst <+> ppr tys_actual )
264 case tcUnifyTys bind_fn ltys1 ltys2 of
265 Nothing -> []
266 Just subst | isJust (tcUnifyTys bind_fn rtys1' rtys2')
267 -- Don't include any equations that already hold.
268 -- Reason: then we know if any actual improvement has happened,
269 -- in which case we need to iterate the solver
270 -- In making this check we must taking account of the fact that any
271 -- qtvs that aren't already instantiated can be instantiated to anything
272 -- at all
273 -- NB: We can't do this 'is-useful-equation' check element-wise
274 -- because of:
275 -- class C a b c | a -> b c
276 -- instance C Int x x
277 -- [Wanted] C Int alpha Int
278 -- We would get that x -> alpha (isJust) and x -> Int (isJust)
279 -- so we would produce no FDs, which is clearly wrong.
280 -> []
282 | null fdeqs
283 -> []
285 | otherwise
286 -> [(meta_tvs, fdeqs)]
287 -- We could avoid this substTy stuff by producing the eqn
288 -- (qtvs, ls1++rs1, ls2++rs2)
289 -- which will re-do the ls1/ls2 unification when the equation is
290 -- executed. What we're doing instead is recording the partial
291 -- work of the ls1/ls2 unification leaving a smaller unification problem
292 where
293 rtys1' = map (substTy subst) rtys1
294 rtys2' = map (substTy subst) rtys2
296 fdeqs = zipAndComputeFDEqs (\_ _ -> False) rtys1' rtys2'
298 -- We could discard equal types but it's an overkill to call
299 -- eqType again, since we know for sure that /at least one/
300 -- equation in there is useful)
302 meta_tvs = [ setVarType tv (substTy subst (varType tv))
303 | tv <- qtvs, tv `notElemTvSubst` subst ]
304 -- meta_tvs are the quantified type variables
305 -- that have not been substituted out
306 --
307 -- Eg. class C a b | a -> b
308 -- instance C Int [y]
309 -- Given constraint C Int z
310 -- we generate the equation
311 -- ({y}, [y], z)
312 --
313 -- But note (a) we get them from the dfun_id, so they are *in order*
314 -- because the kind variables may be mentioned in the
315 -- type variabes' kinds
316 -- (b) we must apply 'subst' to the kinds, in case we have
317 -- matched out a kind variable, but not a type variable
318 -- whose kind mentions that kind variable!
319 -- Trac #6015, #6068
320 where
321 qtv_set = mkVarSet qtvs
322 bind_fn tv | tv `elemVarSet` qtv_set = BindMe
323 | tv `elemVarSet` extra_qtvs = BindMe
324 | otherwise = Skolem
326 (ltys1, rtys1) = instFD fd clas_tvs tys_inst
327 (ltys2, rtys2) = instFD fd clas_tvs tys_actual
329 {-
330 ************************************************************************
331 * *
332 The Coverage condition for instance declarations
333 * *
334 ************************************************************************
336 Note [Coverage condition]
337 ~~~~~~~~~~~~~~~~~~~~~~~~~
338 Example
339 class C a b | a -> b
340 instance theta => C t1 t2
342 For the coverage condition, we check
343 (normal) fv(t2) `subset` fv(t1)
344 (liberal) fv(t2) `subset` oclose(fv(t1), theta)
346 The liberal version ensures the self-consistency of the instance, but
347 it does not guarantee termination. Example:
349 class Mul a b c | a b -> c where
350 (.*.) :: a -> b -> c
352 instance Mul Int Int Int where (.*.) = (*)
353 instance Mul Int Float Float where x .*. y = fromIntegral x * y
354 instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v
356 In the third instance, it's not the case that fv([c]) `subset` fv(a,[b]).
357 But it is the case that fv([c]) `subset` oclose( theta, fv(a,[b]) )
359 But it is a mistake to accept the instance because then this defn:
360 f = \ b x y -> if b then x .*. [y] else y
361 makes instance inference go into a loop, because it requires the constraint
362 Mul a [b] b
363 -}
365 checkInstCoverage :: Bool -- Be liberal
366 -> Class -> [PredType] -> [Type]
367 -> Validity
368 -- "be_liberal" flag says whether to use "liberal" coverage of
369 -- See Note [Coverage Condition] below
370 --
371 -- Return values
372 -- Nothing => no problems
373 -- Just msg => coverage problem described by msg
375 checkInstCoverage be_liberal clas theta inst_taus
376 = allValid (map fundep_ok fds)
377 where
378 (tyvars, fds) = classTvsFds clas
379 fundep_ok fd
380 | isEmptyVarSet undetermined_tvs = IsValid
381 | otherwise = NotValid msg
382 where
383 (ls,rs) = instFD fd tyvars inst_taus
384 ls_tvs = tyVarsOfTypes ls
385 rs_tvs = tyVarsOfTypes rs
387 undetermined_tvs | be_liberal = liberal_undet_tvs
388 | otherwise = conserv_undet_tvs
390 liberal_undet_tvs = rs_tvs `minusVarSet`oclose theta (closeOverKinds ls_tvs)
391 conserv_undet_tvs = rs_tvs `minusVarSet` closeOverKinds ls_tvs
392 -- closeOverKinds: see Note [Closing over kinds in coverage]
394 undet_list = varSetElemsKvsFirst undetermined_tvs
396 msg = vcat [ -- text "ls_tvs" <+> ppr ls_tvs
397 -- , text "closed ls_tvs" <+> ppr (closeOverKinds ls_tvs)
398 -- , text "theta" <+> ppr theta
399 -- , text "oclose" <+> ppr (oclose theta (closeOverKinds ls_tvs))
400 -- , text "rs_tvs" <+> ppr rs_tvs
401 sep [ ptext (sLit "The")
402 <+> ppWhen be_liberal (ptext (sLit "liberal"))
403 <+> ptext (sLit "coverage condition fails in class")
404 <+> quotes (ppr clas)
405 , nest 2 \$ ptext (sLit "for functional dependency:")
406 <+> quotes (pprFunDep fd) ]
407 , sep [ ptext (sLit "Reason: lhs type")<>plural ls <+> pprQuotedList ls
408 , nest 2 \$
409 (if isSingleton ls
410 then ptext (sLit "does not")
411 else ptext (sLit "do not jointly"))
412 <+> ptext (sLit "determine rhs type")<>plural rs
413 <+> pprQuotedList rs ]
414 , ptext (sLit "Un-determined variable") <> plural undet_list <> colon
415 <+> pprWithCommas ppr undet_list
416 , ppWhen (all isKindVar undet_list) \$
417 ptext (sLit "(Use -fprint-explicit-kinds to see the kind variables in the types)")
418 , ppWhen (not be_liberal && isEmptyVarSet liberal_undet_tvs) \$
419 ptext (sLit "Using UndecidableInstances might help") ]
421 {- Note [Closing over kinds in coverage]
422 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
423 Suppose we have a fundep (a::k) -> b
424 Then if 'a' is instantiated to (x y), where x:k2->*, y:k2,
425 then fixing x really fixes k2 as well, and so k2 should be added to
426 the lhs tyvars in the fundep check.
428 Example (Trac #8391), using liberal coverage
429 data Foo a = ... -- Foo :: forall k. k -> *
430 class Bar a b | a -> b
431 instance Bar a (Foo a)
433 In the instance decl, (a:k) does fix (Foo k a), but only if we notice
434 that (a:k) fixes k. Trac #10109 is another example.
436 Here is a more subtle example, from HList-0.4.0.0 (Trac #10564)
438 class HasFieldM (l :: k) r (v :: Maybe *)
439 | l r -> v where ...
440 class HasFieldM1 (b :: Maybe [*]) (l :: k) r v
441 | b l r -> v where ...
442 class HMemberM (e1 :: k) (l :: [k]) (r :: Maybe [k])
443 | e1 l -> r
445 data Label :: k -> *
446 type family LabelsOf (a :: [*]) :: *
448 instance (HMemberM (Label {k} (l::k)) (LabelsOf xs) b,
449 HasFieldM1 b l (r xs) v)
450 => HasFieldM l (r xs) v where
452 Is the instance OK? Does {l,r,xs} determine v? Well:
454 * From the instance constraint HMemberM (Label k l) (LabelsOf xs) b,
455 plus the fundep "| el l -> r" in class HMameberM,
456 we get {l,k,xs} -> b
458 * Note the 'k'!! We must call closeOverKinds on the seed set
459 ls_tvs = {l,r,xs}, BEFORE doing oclose, else the {l,k,xs}->b
460 fundep won't fire. This was the reason for #10564.
462 * So starting from seeds {l,r,xs,k} we do oclose to get
463 first {l,r,xs,k,b}, via the HMemberM constraint, and then
464 {l,r,xs,k,b,v}, via the HasFieldM1 constraint.
466 * And that fixes v.
468 However, we must closeOverKinds whenever augmenting the seed set
469 in oclose! Consider Trac #10109:
471 data Succ a -- Succ :: forall k. k -> *
472 class Add (a :: k1) (b :: k2) (ab :: k3) | a b -> ab
473 instance (Add a b ab) => Add (Succ {k1} (a :: k1))
474 b
475 (Succ {k3} (ab :: k3})
478 Now use the fundep to extend to {a,k1,b,k2,ab}. But we need to
479 closeOverKinds *again* now to {a,k1,b,k2,ab,k3}, so that we fix all
480 the variables free in (Succ {k3} ab).
482 Bottom line:
483 * closeOverKinds on initial seeds (in checkInstCoverage)
484 * and closeOverKinds whenever extending those seeds (in oclose)
486 Note [The liberal coverage condition]
487 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
488 (oclose preds tvs) closes the set of type variables tvs,
489 wrt functional dependencies in preds. The result is a superset
490 of the argument set. For example, if we have
491 class C a b | a->b where ...
492 then
493 oclose [C (x,y) z, C (x,p) q] {x,y} = {x,y,z}
494 because if we know x and y then that fixes z.
496 We also use equality predicates in the predicates; if we have an
497 assumption `t1 ~ t2`, then we use the fact that if we know `t1` we
498 also know `t2` and the other way.
499 eg oclose [C (x,y) z, a ~ x] {a,y} = {a,y,z,x}
501 oclose is used (only) when checking the coverage condition for
502 an instance declaration
503 -}
505 oclose :: [PredType] -> TyVarSet -> TyVarSet
506 -- See Note [The liberal coverage condition]
507 oclose preds fixed_tvs
508 | null tv_fds = fixed_tvs -- Fast escape hatch for common case.
509 | otherwise = fixVarSet extend fixed_tvs
510 where
511 extend fixed_tvs = foldl add fixed_tvs tv_fds
512 where
514 | ls `subVarSet` fixed_tvs = fixed_tvs `unionVarSet` closeOverKinds rs
515 | otherwise = fixed_tvs
516 -- closeOverKinds: see Note [Closing over kinds in coverage]
518 tv_fds :: [(TyVarSet,TyVarSet)]
519 tv_fds = [ (tyVarsOfTypes ls, tyVarsOfTypes rs)
520 | pred <- preds
521 , (ls, rs) <- determined pred ]
523 determined :: PredType -> [([Type],[Type])]
524 determined pred
525 = case classifyPredType pred of
526 EqPred NomEq t1 t2 -> [([t1],[t2]), ([t2],[t1])]
527 ClassPred cls tys -> local_fds ++ concatMap determined superclasses
528 where
529 local_fds = [ instFD fd cls_tvs tys
530 | fd <- cls_fds ]
531 (cls_tvs, cls_fds) = classTvsFds cls
532 superclasses = immSuperClasses cls tys
533 _ -> []
535 {-
536 ************************************************************************
537 * *
538 Check that a new instance decl is OK wrt fundeps
539 * *
540 ************************************************************************
542 Here is the bad case:
543 class C a b | a->b where ...
544 instance C Int Bool where ...
545 instance C Int Char where ...
547 The point is that a->b, so Int in the first parameter must uniquely
548 determine the second. In general, given the same class decl, and given
550 instance C s1 s2 where ...
551 instance C t1 t2 where ...
553 Then the criterion is: if U=unify(s1,t1) then U(s2) = U(t2).
555 Matters are a little more complicated if there are free variables in
556 the s2/t2.
558 class D a b c | a -> b
559 instance D a b => D [(a,a)] [b] Int
560 instance D a b => D [a] [b] Bool
562 The instance decls don't overlap, because the third parameter keeps
563 them separate. But we want to make sure that given any constraint
564 D s1 s2 s3
565 if s1 matches
566 -}
568 checkFunDeps :: InstEnvs -> ClsInst
569 -> Maybe [ClsInst] -- Nothing <=> ok
570 -- Just dfs <=> conflict with dfs
571 -- Check whether adding DFunId would break functional-dependency constraints
572 -- Used only for instance decls defined in the module being compiled
573 checkFunDeps inst_envs ispec
574 | null bad_fundeps = Nothing
575 | otherwise = Just bad_fundeps
576 where
577 (ins_tvs, clas, ins_tys) = instanceHead ispec
578 ins_tv_set = mkVarSet ins_tvs
579 cls_inst_env = classInstances inst_envs clas
582 badFunDeps :: [ClsInst] -> Class
583 -> TyVarSet -> [Type] -- Proposed new instance type
584 -> [ClsInst]
585 badFunDeps cls_insts clas ins_tv_set ins_tys
586 = nubBy eq_inst \$
587 [ ispec | fd <- fds, -- fds is often empty, so do this first!
588 let trimmed_tcs = trimRoughMatchTcs clas_tvs fd rough_tcs,
589 ispec <- cls_insts,
590 notNull (checkClsFD fd clas_tvs ispec ins_tv_set ins_tys trimmed_tcs)
591 ]
592 where
593 (clas_tvs, fds) = classTvsFds clas
594 rough_tcs = roughMatchTcs ins_tys
595 eq_inst i1 i2 = instanceDFunId i1 == instanceDFunId i2
596 -- An single instance may appear twice in the un-nubbed conflict list
597 -- because it may conflict with more than one fundep. E.g.
598 -- class C a b c | a -> b, a -> c
599 -- instance C Int Bool Bool
600 -- instance C Int Char Char
601 -- The second instance conflicts with the first by *both* fundeps
603 trimRoughMatchTcs :: [TyVar] -> FunDep TyVar -> [Maybe Name] -> [Maybe Name]
604 -- Computing rough_tcs for a particular fundep
605 -- class C a b c | a -> b where ...
606 -- For each instance .... => C ta tb tc
607 -- we want to match only on the type ta; so our
608 -- rough-match thing must similarly be filtered.
609 -- Hence, we Nothing-ise the tb and tc types right here
610 trimRoughMatchTcs clas_tvs (ltvs, _) mb_tcs
611 = zipWith select clas_tvs mb_tcs
612 where
613 select clas_tv mb_tc | clas_tv `elem` ltvs = mb_tc
614 | otherwise = Nothing