Merge branch 'master' of http://darcs.haskell.org/ghc
[ghc.git] / rts / Linker.c
1 /* -----------------------------------------------------------------------------
2 *
3 * (c) The GHC Team, 2000-2012
4 *
5 * RTS Object Linker
6 *
7 * ---------------------------------------------------------------------------*/
8
9 #if 0
10 #include "PosixSource.h"
11 #endif
12
13 /* Linux needs _GNU_SOURCE to get RTLD_DEFAULT from <dlfcn.h> and
14 MREMAP_MAYMOVE from <sys/mman.h>.
15 */
16 #if defined(__linux__) || defined(__GLIBC__)
17 #define _GNU_SOURCE 1
18 #endif
19
20 #include "Rts.h"
21 #include "HsFFI.h"
22
23 #include "sm/Storage.h"
24 #include "Stats.h"
25 #include "Hash.h"
26 #include "LinkerInternals.h"
27 #include "RtsUtils.h"
28 #include "Trace.h"
29 #include "StgPrimFloat.h" // for __int_encodeFloat etc.
30 #include "Stable.h"
31 #include "Proftimer.h"
32
33 #if !defined(mingw32_HOST_OS)
34 #include "posix/Signals.h"
35 #endif
36
37 // get protos for is*()
38 #include <ctype.h>
39
40 #ifdef HAVE_SYS_TYPES_H
41 #include <sys/types.h>
42 #endif
43
44 #include <inttypes.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <stdio.h>
48 #include <assert.h>
49
50 #ifdef HAVE_SYS_STAT_H
51 #include <sys/stat.h>
52 #endif
53
54 #if defined(HAVE_DLFCN_H)
55 #include <dlfcn.h>
56 #endif
57
58 #if defined(cygwin32_HOST_OS)
59 #ifdef HAVE_DIRENT_H
60 #include <dirent.h>
61 #endif
62
63 #ifdef HAVE_SYS_TIME_H
64 #include <sys/time.h>
65 #endif
66 #include <regex.h>
67 #include <sys/fcntl.h>
68 #include <sys/termios.h>
69 #include <sys/utime.h>
70 #include <sys/utsname.h>
71 #include <sys/wait.h>
72 #endif
73
74 #if (defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS)) \
75 || (!defined(powerpc_HOST_ARCH) && \
76 ( defined(linux_HOST_OS) || defined(freebsd_HOST_OS) || \
77 defined(dragonfly_HOST_OS) || defined(netbsd_HOST_OS ) || \
78 defined(openbsd_HOST_OS ) || defined(darwin_HOST_OS ) || \
79 defined(kfreebsdgnu_HOST_OS) || defined(gnu_HOST_OS)))
80 /* Don't use mmap on powerpc_HOST_ARCH as mmap doesn't support
81 * reallocating but we need to allocate jump islands just after each
82 * object images. Otherwise relative branches to jump islands can fail
83 * due to 24-bits displacement overflow.
84 */
85 #define USE_MMAP
86 #include <fcntl.h>
87 #include <sys/mman.h>
88
89 #ifdef HAVE_UNISTD_H
90 #include <unistd.h>
91 #endif
92
93 #endif
94
95
96 /* PowerPC has relative branch instructions with only 24 bit displacements
97 * and therefore needs jump islands contiguous with each object code module.
98 */
99 #if (defined(USE_MMAP) && defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS))
100 #define USE_CONTIGUOUS_MMAP 1
101 #else
102 #define USE_CONTIGUOUS_MMAP 0
103 #endif
104
105 #if defined(linux_HOST_OS) || defined(solaris2_HOST_OS) || defined(freebsd_HOST_OS) || defined(kfreebsdgnu_HOST_OS) || defined(dragonfly_HOST_OS) || defined(netbsd_HOST_OS) || defined(openbsd_HOST_OS) || defined(gnu_HOST_OS)
106 # define OBJFORMAT_ELF
107 # include <regex.h> // regex is already used by dlopen() so this is OK
108 // to use here without requiring an additional lib
109 #elif defined(cygwin32_HOST_OS) || defined (mingw32_HOST_OS)
110 # define OBJFORMAT_PEi386
111 # include <windows.h>
112 # include <math.h>
113 #elif defined(darwin_HOST_OS)
114 # define OBJFORMAT_MACHO
115 # include <regex.h>
116 # include <mach/machine.h>
117 # include <mach-o/fat.h>
118 # include <mach-o/loader.h>
119 # include <mach-o/nlist.h>
120 # include <mach-o/reloc.h>
121 #if !defined(HAVE_DLFCN_H)
122 # include <mach-o/dyld.h>
123 #endif
124 #if defined(powerpc_HOST_ARCH)
125 # include <mach-o/ppc/reloc.h>
126 #endif
127 #if defined(x86_64_HOST_ARCH)
128 # include <mach-o/x86_64/reloc.h>
129 #endif
130 #endif
131
132 #if defined(x86_64_HOST_ARCH) && defined(darwin_HOST_OS)
133 #define ALWAYS_PIC
134 #endif
135
136 #if defined(dragonfly_HOST_OS)
137 #include <sys/tls.h>
138 #endif
139
140 // Defining this as 'int' rather than 'const int' means that we don't get
141 // warnings like
142 // error: function might be possible candidate for attribute ‘noreturn’
143 // from gcc:
144 #ifdef DYNAMIC_GHC_PROGRAMS
145 int dynamicGhcPrograms = 1;
146 #else
147 int dynamicGhcPrograms = 0;
148 #endif
149
150 /* Hash table mapping symbol names to Symbol */
151 static /*Str*/HashTable *symhash;
152
153 /* Hash table mapping symbol names to StgStablePtr */
154 static /*Str*/HashTable *stablehash;
155
156 /* List of currently loaded objects */
157 ObjectCode *objects = NULL; /* initially empty */
158
159 static HsInt loadOc( ObjectCode* oc );
160 static ObjectCode* mkOc( pathchar *path, char *image, int imageSize,
161 char *archiveMemberName
162 #ifndef USE_MMAP
163 #ifdef darwin_HOST_OS
164 , int misalignment
165 #endif
166 #endif
167 );
168
169 // Use wchar_t for pathnames on Windows (#5697)
170 #if defined(mingw32_HOST_OS)
171 #define pathcmp wcscmp
172 #define pathlen wcslen
173 #define pathopen _wfopen
174 #define pathstat _wstat
175 #define struct_stat struct _stat
176 #define open wopen
177 #define WSTR(s) L##s
178 #define PATH_FMT "S"
179 #else
180 #define pathcmp strcmp
181 #define pathlen strlen
182 #define pathopen fopen
183 #define pathstat stat
184 #define struct_stat struct stat
185 #define WSTR(s) s
186 #define PATH_FMT "s"
187 #endif
188
189 static pathchar* pathdup(pathchar *path)
190 {
191 pathchar *ret;
192 #if defined(mingw32_HOST_OS)
193 ret = wcsdup(path);
194 #else
195 /* sigh, strdup() isn't a POSIX function, so do it the long way */
196 ret = stgMallocBytes( strlen(path)+1, "loadObj" );
197 strcpy(ret, path);
198 #endif
199 return ret;
200 }
201
202
203 #if defined(OBJFORMAT_ELF)
204 static int ocVerifyImage_ELF ( ObjectCode* oc );
205 static int ocGetNames_ELF ( ObjectCode* oc );
206 static int ocResolve_ELF ( ObjectCode* oc );
207 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH) || defined(arm_HOST_ARCH)
208 static int ocAllocateSymbolExtras_ELF ( ObjectCode* oc );
209 #endif
210 #elif defined(OBJFORMAT_PEi386)
211 static int ocVerifyImage_PEi386 ( ObjectCode* oc );
212 static int ocGetNames_PEi386 ( ObjectCode* oc );
213 static int ocResolve_PEi386 ( ObjectCode* oc );
214 static void *lookupSymbolInDLLs ( unsigned char *lbl );
215 static void zapTrailingAtSign ( unsigned char *sym );
216 #elif defined(OBJFORMAT_MACHO)
217 static int ocVerifyImage_MachO ( ObjectCode* oc );
218 static int ocGetNames_MachO ( ObjectCode* oc );
219 static int ocResolve_MachO ( ObjectCode* oc );
220
221 #ifndef USE_MMAP
222 static int machoGetMisalignment( FILE * );
223 #endif
224 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
225 static int ocAllocateSymbolExtras_MachO ( ObjectCode* oc );
226 #endif
227 #ifdef powerpc_HOST_ARCH
228 static void machoInitSymbolsWithoutUnderscore( void );
229 #endif
230 #endif
231
232 /* on x86_64 we have a problem with relocating symbol references in
233 * code that was compiled without -fPIC. By default, the small memory
234 * model is used, which assumes that symbol references can fit in a
235 * 32-bit slot. The system dynamic linker makes this work for
236 * references to shared libraries by either (a) allocating a jump
237 * table slot for code references, or (b) moving the symbol at load
238 * time (and copying its contents, if necessary) for data references.
239 *
240 * We unfortunately can't tell whether symbol references are to code
241 * or data. So for now we assume they are code (the vast majority
242 * are), and allocate jump-table slots. Unfortunately this will
243 * SILENTLY generate crashing code for data references. This hack is
244 * enabled by X86_64_ELF_NONPIC_HACK.
245 *
246 * One workaround is to use shared Haskell libraries. This is
247 * coming. Another workaround is to keep the static libraries but
248 * compile them with -fPIC, because that will generate PIC references
249 * to data which can be relocated. The PIC code is still too green to
250 * do this systematically, though.
251 *
252 * See bug #781
253 * See thread http://www.haskell.org/pipermail/cvs-ghc/2007-September/038458.html
254 *
255 * Naming Scheme for Symbol Macros
256 *
257 * SymI_*: symbol is internal to the RTS. It resides in an object
258 * file/library that is statically.
259 * SymE_*: symbol is external to the RTS library. It might be linked
260 * dynamically.
261 *
262 * Sym*_HasProto : the symbol prototype is imported in an include file
263 * or defined explicitly
264 * Sym*_NeedsProto: the symbol is undefined and we add a dummy
265 * default proto extern void sym(void);
266 */
267 #define X86_64_ELF_NONPIC_HACK 1
268
269 /* Link objects into the lower 2Gb on x86_64. GHC assumes the
270 * small memory model on this architecture (see gcc docs,
271 * -mcmodel=small).
272 *
273 * MAP_32BIT not available on OpenBSD/amd64
274 */
275 #if defined(x86_64_HOST_ARCH) && defined(MAP_32BIT)
276 #define TRY_MAP_32BIT MAP_32BIT
277 #else
278 #define TRY_MAP_32BIT 0
279 #endif
280
281 /*
282 * Due to the small memory model (see above), on x86_64 we have to map
283 * all our non-PIC object files into the low 2Gb of the address space
284 * (why 2Gb and not 4Gb? Because all addresses must be reachable
285 * using a 32-bit signed PC-relative offset). On Linux we can do this
286 * using the MAP_32BIT flag to mmap(), however on other OSs
287 * (e.g. *BSD, see #2063, and also on Linux inside Xen, see #2512), we
288 * can't do this. So on these systems, we have to pick a base address
289 * in the low 2Gb of the address space and try to allocate memory from
290 * there.
291 *
292 * We pick a default address based on the OS, but also make this
293 * configurable via an RTS flag (+RTS -xm)
294 */
295 #if !defined(ALWAYS_PIC) && defined(x86_64_HOST_ARCH)
296
297 #if defined(MAP_32BIT)
298 // Try to use MAP_32BIT
299 #define MMAP_32BIT_BASE_DEFAULT 0
300 #else
301 // A guess: 1Gb.
302 #define MMAP_32BIT_BASE_DEFAULT 0x40000000
303 #endif
304
305 static void *mmap_32bit_base = (void *)MMAP_32BIT_BASE_DEFAULT;
306 #endif
307
308 /* MAP_ANONYMOUS is MAP_ANON on some systems, e.g. OpenBSD */
309 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
310 #define MAP_ANONYMOUS MAP_ANON
311 #endif
312
313 /* -----------------------------------------------------------------------------
314 * Built-in symbols from the RTS
315 */
316
317 typedef struct _RtsSymbolVal {
318 char *lbl;
319 void *addr;
320 } RtsSymbolVal;
321
322 #define Maybe_Stable_Names SymI_HasProto(stg_mkWeakzh) \
323 SymI_HasProto(stg_mkWeakNoFinalizzerzh) \
324 SymI_HasProto(stg_mkWeakForeignEnvzh) \
325 SymI_HasProto(stg_makeStableNamezh) \
326 SymI_HasProto(stg_finalizzeWeakzh)
327
328 #if !defined (mingw32_HOST_OS)
329 #define RTS_POSIX_ONLY_SYMBOLS \
330 SymI_HasProto(__hscore_get_saved_termios) \
331 SymI_HasProto(__hscore_set_saved_termios) \
332 SymI_HasProto(shutdownHaskellAndSignal) \
333 SymI_HasProto(signal_handlers) \
334 SymI_HasProto(stg_sig_install) \
335 SymI_HasProto(rtsTimerSignal) \
336 SymI_HasProto(atexit) \
337 SymI_NeedsProto(nocldstop)
338 #endif
339
340 #if defined (cygwin32_HOST_OS)
341 #define RTS_MINGW_ONLY_SYMBOLS /**/
342 /* Don't have the ability to read import libs / archives, so
343 * we have to stupidly list a lot of what libcygwin.a
344 * exports; sigh.
345 */
346 #define RTS_CYGWIN_ONLY_SYMBOLS \
347 SymI_HasProto(regfree) \
348 SymI_HasProto(regexec) \
349 SymI_HasProto(regerror) \
350 SymI_HasProto(regcomp) \
351 SymI_HasProto(__errno) \
352 SymI_HasProto(access) \
353 SymI_HasProto(chmod) \
354 SymI_HasProto(chdir) \
355 SymI_HasProto(close) \
356 SymI_HasProto(creat) \
357 SymI_HasProto(dup) \
358 SymI_HasProto(dup2) \
359 SymI_HasProto(fstat) \
360 SymI_HasProto(fcntl) \
361 SymI_HasProto(getcwd) \
362 SymI_HasProto(getenv) \
363 SymI_HasProto(lseek) \
364 SymI_HasProto(open) \
365 SymI_HasProto(fpathconf) \
366 SymI_HasProto(pathconf) \
367 SymI_HasProto(stat) \
368 SymI_HasProto(pow) \
369 SymI_HasProto(tanh) \
370 SymI_HasProto(cosh) \
371 SymI_HasProto(sinh) \
372 SymI_HasProto(atan) \
373 SymI_HasProto(acos) \
374 SymI_HasProto(asin) \
375 SymI_HasProto(tan) \
376 SymI_HasProto(cos) \
377 SymI_HasProto(sin) \
378 SymI_HasProto(exp) \
379 SymI_HasProto(log) \
380 SymI_HasProto(sqrt) \
381 SymI_HasProto(localtime_r) \
382 SymI_HasProto(gmtime_r) \
383 SymI_HasProto(mktime) \
384 SymI_NeedsProto(_imp___tzname) \
385 SymI_HasProto(gettimeofday) \
386 SymI_HasProto(timezone) \
387 SymI_HasProto(tcgetattr) \
388 SymI_HasProto(tcsetattr) \
389 SymI_HasProto(memcpy) \
390 SymI_HasProto(memmove) \
391 SymI_HasProto(realloc) \
392 SymI_HasProto(malloc) \
393 SymI_HasProto(free) \
394 SymI_HasProto(fork) \
395 SymI_HasProto(lstat) \
396 SymI_HasProto(isatty) \
397 SymI_HasProto(mkdir) \
398 SymI_HasProto(opendir) \
399 SymI_HasProto(readdir) \
400 SymI_HasProto(rewinddir) \
401 SymI_HasProto(closedir) \
402 SymI_HasProto(link) \
403 SymI_HasProto(mkfifo) \
404 SymI_HasProto(pipe) \
405 SymI_HasProto(read) \
406 SymI_HasProto(rename) \
407 SymI_HasProto(rmdir) \
408 SymI_HasProto(select) \
409 SymI_HasProto(system) \
410 SymI_HasProto(write) \
411 SymI_HasProto(strcmp) \
412 SymI_HasProto(strcpy) \
413 SymI_HasProto(strncpy) \
414 SymI_HasProto(strerror) \
415 SymI_HasProto(sigaddset) \
416 SymI_HasProto(sigemptyset) \
417 SymI_HasProto(sigprocmask) \
418 SymI_HasProto(umask) \
419 SymI_HasProto(uname) \
420 SymI_HasProto(unlink) \
421 SymI_HasProto(utime) \
422 SymI_HasProto(waitpid)
423
424 #elif defined(mingw32_HOST_OS)
425 #define RTS_POSIX_ONLY_SYMBOLS /**/
426 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
427
428 #if HAVE_GETTIMEOFDAY
429 #define RTS_MINGW_GETTIMEOFDAY_SYM SymI_NeedsProto(gettimeofday)
430 #else
431 #define RTS_MINGW_GETTIMEOFDAY_SYM /**/
432 #endif
433
434 #if HAVE___MINGW_VFPRINTF
435 #define RTS___MINGW_VFPRINTF_SYM SymI_HasProto(__mingw_vfprintf)
436 #else
437 #define RTS___MINGW_VFPRINTF_SYM /**/
438 #endif
439
440 #if defined(i386_HOST_ARCH)
441 #define RTS_WIN32_ONLY(X) X
442 #else
443 #define RTS_WIN32_ONLY(X) /**/
444 #endif
445
446 #if defined(x86_64_HOST_ARCH)
447 #define RTS_WIN64_ONLY(X) X
448 #else
449 #define RTS_WIN64_ONLY(X) /**/
450 #endif
451
452 /* These are statically linked from the mingw libraries into the ghc
453 executable, so we have to employ this hack. */
454 #define RTS_MINGW_ONLY_SYMBOLS \
455 SymI_HasProto(stg_asyncReadzh) \
456 SymI_HasProto(stg_asyncWritezh) \
457 SymI_HasProto(stg_asyncDoProczh) \
458 SymI_HasProto(getWin32ProgArgv) \
459 SymI_HasProto(setWin32ProgArgv) \
460 SymI_HasProto(memset) \
461 SymI_HasProto(inet_ntoa) \
462 SymI_HasProto(inet_addr) \
463 SymI_HasProto(htonl) \
464 SymI_HasProto(recvfrom) \
465 SymI_HasProto(listen) \
466 SymI_HasProto(bind) \
467 SymI_HasProto(shutdown) \
468 SymI_HasProto(connect) \
469 SymI_HasProto(htons) \
470 SymI_HasProto(ntohs) \
471 SymI_HasProto(getservbyname) \
472 SymI_HasProto(getservbyport) \
473 SymI_HasProto(getprotobynumber) \
474 SymI_HasProto(getprotobyname) \
475 SymI_HasProto(gethostbyname) \
476 SymI_HasProto(gethostbyaddr) \
477 SymI_HasProto(gethostname) \
478 SymI_HasProto(strcpy) \
479 SymI_HasProto(strncpy) \
480 SymI_HasProto(abort) \
481 RTS_WIN32_ONLY(SymI_NeedsProto(_alloca)) \
482 SymI_HasProto(isxdigit) \
483 SymI_HasProto(isupper) \
484 SymI_HasProto(ispunct) \
485 SymI_HasProto(islower) \
486 SymI_HasProto(isspace) \
487 SymI_HasProto(isprint) \
488 SymI_HasProto(isdigit) \
489 SymI_HasProto(iscntrl) \
490 SymI_HasProto(isalpha) \
491 SymI_HasProto(isalnum) \
492 SymI_HasProto(isascii) \
493 RTS___MINGW_VFPRINTF_SYM \
494 SymI_HasProto(strcmp) \
495 SymI_HasProto(memmove) \
496 SymI_HasProto(realloc) \
497 SymI_HasProto(malloc) \
498 SymI_HasProto(pow) \
499 SymI_HasProto(tanh) \
500 SymI_HasProto(cosh) \
501 SymI_HasProto(sinh) \
502 SymI_HasProto(atan) \
503 SymI_HasProto(acos) \
504 SymI_HasProto(asin) \
505 SymI_HasProto(tan) \
506 SymI_HasProto(cos) \
507 SymI_HasProto(sin) \
508 SymI_HasProto(exp) \
509 SymI_HasProto(log) \
510 SymI_HasProto(sqrt) \
511 SymI_HasProto(powf) \
512 SymI_HasProto(tanhf) \
513 SymI_HasProto(coshf) \
514 SymI_HasProto(sinhf) \
515 SymI_HasProto(atanf) \
516 SymI_HasProto(acosf) \
517 SymI_HasProto(asinf) \
518 SymI_HasProto(tanf) \
519 SymI_HasProto(cosf) \
520 SymI_HasProto(sinf) \
521 SymI_HasProto(expf) \
522 SymI_HasProto(logf) \
523 SymI_HasProto(sqrtf) \
524 SymI_HasProto(erf) \
525 SymI_HasProto(erfc) \
526 SymI_HasProto(erff) \
527 SymI_HasProto(erfcf) \
528 SymI_HasProto(memcpy) \
529 SymI_HasProto(rts_InstallConsoleEvent) \
530 SymI_HasProto(rts_ConsoleHandlerDone) \
531 SymI_NeedsProto(mktime) \
532 RTS_WIN32_ONLY(SymI_NeedsProto(_imp___timezone)) \
533 RTS_WIN32_ONLY(SymI_NeedsProto(_imp___tzname)) \
534 RTS_WIN32_ONLY(SymI_NeedsProto(_imp__tzname)) \
535 RTS_WIN32_ONLY(SymI_NeedsProto(_imp___iob)) \
536 RTS_WIN32_ONLY(SymI_NeedsProto(_imp___osver)) \
537 SymI_NeedsProto(localtime) \
538 SymI_NeedsProto(gmtime) \
539 SymI_NeedsProto(opendir) \
540 SymI_NeedsProto(readdir) \
541 SymI_NeedsProto(rewinddir) \
542 RTS_WIN32_ONLY(SymI_NeedsProto(_imp____mb_cur_max)) \
543 RTS_WIN32_ONLY(SymI_NeedsProto(_imp___pctype)) \
544 RTS_WIN32_ONLY(SymI_NeedsProto(__chkstk)) \
545 RTS_WIN64_ONLY(SymI_NeedsProto(__imp___iob_func)) \
546 RTS_WIN64_ONLY(SymI_NeedsProto(___chkstk_ms)) \
547 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_localeconv)) \
548 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_islower)) \
549 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_isspace)) \
550 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_isxdigit)) \
551 RTS_WIN64_ONLY(SymI_HasProto(close)) \
552 RTS_WIN64_ONLY(SymI_HasProto(read)) \
553 RTS_WIN64_ONLY(SymI_HasProto(dup)) \
554 RTS_WIN64_ONLY(SymI_HasProto(dup2)) \
555 RTS_WIN64_ONLY(SymI_HasProto(write)) \
556 SymI_NeedsProto(getpid) \
557 RTS_WIN64_ONLY(SymI_HasProto(access)) \
558 SymI_HasProto(chmod) \
559 RTS_WIN64_ONLY(SymI_HasProto(creat)) \
560 RTS_WIN64_ONLY(SymI_HasProto(umask)) \
561 SymI_HasProto(unlink) \
562 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__errno)) \
563 RTS_WIN64_ONLY(SymI_NeedsProto(ftruncate64)) \
564 RTS_WIN64_ONLY(SymI_HasProto(setmode)) \
565 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__wstat64)) \
566 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__fstat64)) \
567 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__wsopen)) \
568 RTS_WIN64_ONLY(SymI_HasProto(__imp__environ)) \
569 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetFileAttributesA)) \
570 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetFileInformationByHandle)) \
571 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetFileType)) \
572 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetLastError)) \
573 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_QueryPerformanceFrequency)) \
574 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_QueryPerformanceCounter)) \
575 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetTickCount)) \
576 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_WaitForSingleObject)) \
577 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_PeekConsoleInputA)) \
578 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_ReadConsoleInputA)) \
579 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_PeekNamedPipe)) \
580 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__isatty)) \
581 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_select)) \
582 RTS_WIN64_ONLY(SymI_HasProto(isatty)) \
583 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__get_osfhandle)) \
584 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetConsoleMode)) \
585 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_SetConsoleMode)) \
586 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_FlushConsoleInputBuffer)) \
587 RTS_WIN64_ONLY(SymI_HasProto(free)) \
588 RTS_WIN64_ONLY(SymI_NeedsProto(raise)) \
589 RTS_WIN64_ONLY(SymI_NeedsProto(_getpid)) \
590 RTS_WIN64_ONLY(SymI_HasProto(getc)) \
591 RTS_WIN64_ONLY(SymI_HasProto(ungetc)) \
592 RTS_WIN64_ONLY(SymI_HasProto(puts)) \
593 RTS_WIN64_ONLY(SymI_HasProto(putc)) \
594 RTS_WIN64_ONLY(SymI_HasProto(putchar)) \
595 RTS_WIN64_ONLY(SymI_HasProto(fputc)) \
596 RTS_WIN64_ONLY(SymI_HasProto(fread)) \
597 RTS_WIN64_ONLY(SymI_HasProto(fwrite)) \
598 RTS_WIN64_ONLY(SymI_HasProto(ferror)) \
599 RTS_WIN64_ONLY(SymI_HasProto(printf)) \
600 RTS_WIN64_ONLY(SymI_HasProto(fprintf)) \
601 RTS_WIN64_ONLY(SymI_HasProto(sprintf)) \
602 RTS_WIN64_ONLY(SymI_HasProto(vsprintf)) \
603 RTS_WIN64_ONLY(SymI_HasProto(sscanf)) \
604 RTS_WIN64_ONLY(SymI_HasProto(ldexp)) \
605 RTS_WIN64_ONLY(SymI_HasProto(strlen)) \
606 RTS_WIN64_ONLY(SymI_HasProto(strnlen)) \
607 RTS_WIN64_ONLY(SymI_HasProto(strchr)) \
608 RTS_WIN64_ONLY(SymI_HasProto(strtol)) \
609 RTS_WIN64_ONLY(SymI_HasProto(strerror)) \
610 RTS_WIN64_ONLY(SymI_HasProto(memchr)) \
611 RTS_WIN64_ONLY(SymI_HasProto(memcmp)) \
612 RTS_WIN64_ONLY(SymI_HasProto(wcscpy)) \
613 RTS_WIN64_ONLY(SymI_HasProto(wcslen)) \
614 RTS_WIN64_ONLY(SymI_HasProto(_lseeki64)) \
615 RTS_WIN64_ONLY(SymI_HasProto(_wchmod)) \
616 RTS_WIN64_ONLY(SymI_HasProto(closesocket)) \
617 RTS_WIN64_ONLY(SymI_HasProto(send)) \
618 RTS_WIN64_ONLY(SymI_HasProto(recv)) \
619 RTS_WIN64_ONLY(SymI_HasProto(bsearch)) \
620 RTS_WIN64_ONLY(SymI_HasProto(CommandLineToArgvW)) \
621 RTS_WIN64_ONLY(SymI_HasProto(CreateBitmap)) \
622 RTS_WIN64_ONLY(SymI_HasProto(CreateBitmapIndirect)) \
623 RTS_WIN64_ONLY(SymI_HasProto(CreateCompatibleBitmap)) \
624 RTS_WIN64_ONLY(SymI_HasProto(CreateDIBPatternBrushPt)) \
625 RTS_WIN64_ONLY(SymI_HasProto(CreateDIBitmap)) \
626 RTS_WIN64_ONLY(SymI_HasProto(SetBitmapDimensionEx)) \
627 RTS_WIN64_ONLY(SymI_HasProto(GetBitmapDimensionEx)) \
628 RTS_WIN64_ONLY(SymI_HasProto(GetStockObject)) \
629 RTS_WIN64_ONLY(SymI_HasProto(GetObjectW)) \
630 RTS_WIN64_ONLY(SymI_HasProto(DeleteObject)) \
631 RTS_WIN64_ONLY(SymI_HasProto(SetDIBits)) \
632 RTS_WIN64_ONLY(SymI_HasProto(GetDIBits)) \
633 RTS_WIN64_ONLY(SymI_HasProto(CreateSolidBrush)) \
634 RTS_WIN64_ONLY(SymI_HasProto(CreateHatchBrush)) \
635 RTS_WIN64_ONLY(SymI_HasProto(CreatePatternBrush)) \
636 RTS_WIN64_ONLY(SymI_HasProto(CreateFontW)) \
637 RTS_WIN64_ONLY(SymI_HasProto(AngleArc)) \
638 RTS_WIN64_ONLY(SymI_HasProto(Arc)) \
639 RTS_WIN64_ONLY(SymI_HasProto(ArcTo)) \
640 RTS_WIN64_ONLY(SymI_HasProto(BeginPath)) \
641 RTS_WIN64_ONLY(SymI_HasProto(BitBlt)) \
642 RTS_WIN64_ONLY(SymI_HasProto(CancelDC)) \
643 RTS_WIN64_ONLY(SymI_HasProto(Chord)) \
644 RTS_WIN64_ONLY(SymI_HasProto(CloseFigure)) \
645 RTS_WIN64_ONLY(SymI_HasProto(CombineRgn)) \
646 RTS_WIN64_ONLY(SymI_HasProto(CreateCompatibleDC)) \
647 RTS_WIN64_ONLY(SymI_HasProto(CreateEllipticRgn)) \
648 RTS_WIN64_ONLY(SymI_HasProto(CreateEllipticRgnIndirect)) \
649 RTS_WIN64_ONLY(SymI_HasProto(CreatePen)) \
650 RTS_WIN64_ONLY(SymI_HasProto(CreatePolygonRgn)) \
651 RTS_WIN64_ONLY(SymI_HasProto(CreateRectRgn)) \
652 RTS_WIN64_ONLY(SymI_HasProto(CreateRectRgnIndirect)) \
653 RTS_WIN64_ONLY(SymI_HasProto(CreateRoundRectRgn)) \
654 RTS_WIN64_ONLY(SymI_HasProto(DeleteDC)) \
655 RTS_WIN64_ONLY(SymI_HasProto(Ellipse)) \
656 RTS_WIN64_ONLY(SymI_HasProto(EndPath)) \
657 RTS_WIN64_ONLY(SymI_HasProto(EqualRgn)) \
658 RTS_WIN64_ONLY(SymI_HasProto(ExtSelectClipRgn)) \
659 RTS_WIN64_ONLY(SymI_HasProto(FillPath)) \
660 RTS_WIN64_ONLY(SymI_HasProto(FillRgn)) \
661 RTS_WIN64_ONLY(SymI_HasProto(FlattenPath)) \
662 RTS_WIN64_ONLY(SymI_HasProto(FrameRgn)) \
663 RTS_WIN64_ONLY(SymI_HasProto(GetArcDirection)) \
664 RTS_WIN64_ONLY(SymI_HasProto(GetBkColor)) \
665 RTS_WIN64_ONLY(SymI_HasProto(GetBkMode)) \
666 RTS_WIN64_ONLY(SymI_HasProto(GetBrushOrgEx)) \
667 RTS_WIN64_ONLY(SymI_HasProto(GetCurrentObject)) \
668 RTS_WIN64_ONLY(SymI_HasProto(GetDCOrgEx)) \
669 RTS_WIN64_ONLY(SymI_HasProto(GetGraphicsMode)) \
670 RTS_WIN64_ONLY(SymI_HasProto(GetMiterLimit)) \
671 RTS_WIN64_ONLY(SymI_HasProto(GetPolyFillMode)) \
672 RTS_WIN64_ONLY(SymI_HasProto(GetRgnBox)) \
673 RTS_WIN64_ONLY(SymI_HasProto(GetStretchBltMode)) \
674 RTS_WIN64_ONLY(SymI_HasProto(GetTextAlign)) \
675 RTS_WIN64_ONLY(SymI_HasProto(GetTextCharacterExtra)) \
676 RTS_WIN64_ONLY(SymI_HasProto(GetTextColor)) \
677 RTS_WIN64_ONLY(SymI_HasProto(GetTextExtentPoint32W)) \
678 RTS_WIN64_ONLY(SymI_HasProto(InvertRgn)) \
679 RTS_WIN64_ONLY(SymI_HasProto(LineTo)) \
680 RTS_WIN64_ONLY(SymI_HasProto(MaskBlt)) \
681 RTS_WIN64_ONLY(SymI_HasProto(MoveToEx)) \
682 RTS_WIN64_ONLY(SymI_HasProto(OffsetRgn)) \
683 RTS_WIN64_ONLY(SymI_HasProto(PaintRgn)) \
684 RTS_WIN64_ONLY(SymI_HasProto(PathToRegion)) \
685 RTS_WIN64_ONLY(SymI_HasProto(Pie)) \
686 RTS_WIN64_ONLY(SymI_HasProto(PlgBlt)) \
687 RTS_WIN64_ONLY(SymI_HasProto(PolyBezier)) \
688 RTS_WIN64_ONLY(SymI_HasProto(PolyBezierTo)) \
689 RTS_WIN64_ONLY(SymI_HasProto(Polygon)) \
690 RTS_WIN64_ONLY(SymI_HasProto(Polyline)) \
691 RTS_WIN64_ONLY(SymI_HasProto(PolylineTo)) \
692 RTS_WIN64_ONLY(SymI_HasProto(PtInRegion)) \
693 RTS_WIN64_ONLY(SymI_HasProto(Rectangle)) \
694 RTS_WIN64_ONLY(SymI_HasProto(RectInRegion)) \
695 RTS_WIN64_ONLY(SymI_HasProto(RestoreDC)) \
696 RTS_WIN64_ONLY(SymI_HasProto(RoundRect)) \
697 RTS_WIN64_ONLY(SymI_HasProto(SaveDC)) \
698 RTS_WIN64_ONLY(SymI_HasProto(SelectClipPath)) \
699 RTS_WIN64_ONLY(SymI_HasProto(SelectClipRgn)) \
700 RTS_WIN64_ONLY(SymI_HasProto(SelectObject)) \
701 RTS_WIN64_ONLY(SymI_HasProto(SelectPalette)) \
702 RTS_WIN64_ONLY(SymI_HasProto(SetArcDirection)) \
703 RTS_WIN64_ONLY(SymI_HasProto(SetBkColor)) \
704 RTS_WIN64_ONLY(SymI_HasProto(SetBkMode)) \
705 RTS_WIN64_ONLY(SymI_HasProto(SetBrushOrgEx)) \
706 RTS_WIN64_ONLY(SymI_HasProto(SetGraphicsMode)) \
707 RTS_WIN64_ONLY(SymI_HasProto(SetMiterLimit)) \
708 RTS_WIN64_ONLY(SymI_HasProto(SetPolyFillMode)) \
709 RTS_WIN64_ONLY(SymI_HasProto(SetStretchBltMode)) \
710 RTS_WIN64_ONLY(SymI_HasProto(SetTextAlign)) \
711 RTS_WIN64_ONLY(SymI_HasProto(SetTextCharacterExtra)) \
712 RTS_WIN64_ONLY(SymI_HasProto(SetTextColor)) \
713 RTS_WIN64_ONLY(SymI_HasProto(StretchBlt)) \
714 RTS_WIN64_ONLY(SymI_HasProto(StrokeAndFillPath)) \
715 RTS_WIN64_ONLY(SymI_HasProto(StrokePath)) \
716 RTS_WIN64_ONLY(SymI_HasProto(TextOutW)) \
717 RTS_WIN64_ONLY(SymI_HasProto(timeGetTime)) \
718 RTS_WIN64_ONLY(SymI_HasProto(WidenPath)) \
719 RTS_WIN64_ONLY(SymI_HasProto(GetFileSecurityW)) \
720 RTS_WIN64_ONLY(SymI_HasProto(RegCloseKey)) \
721 RTS_WIN64_ONLY(SymI_HasProto(RegConnectRegistryW)) \
722 RTS_WIN64_ONLY(SymI_HasProto(RegCreateKeyExW)) \
723 RTS_WIN64_ONLY(SymI_HasProto(RegCreateKeyW)) \
724 RTS_WIN64_ONLY(SymI_HasProto(RegDeleteKeyW)) \
725 RTS_WIN64_ONLY(SymI_HasProto(RegDeleteValueW)) \
726 RTS_WIN64_ONLY(SymI_HasProto(RegEnumKeyW)) \
727 RTS_WIN64_ONLY(SymI_HasProto(RegEnumValueW)) \
728 RTS_WIN64_ONLY(SymI_HasProto(RegFlushKey)) \
729 RTS_WIN64_ONLY(SymI_HasProto(RegLoadKeyW)) \
730 RTS_WIN64_ONLY(SymI_HasProto(RegNotifyChangeKeyValue)) \
731 RTS_WIN64_ONLY(SymI_HasProto(RegOpenKeyExW)) \
732 RTS_WIN64_ONLY(SymI_HasProto(RegOpenKeyW)) \
733 RTS_WIN64_ONLY(SymI_HasProto(RegQueryInfoKeyW)) \
734 RTS_WIN64_ONLY(SymI_HasProto(RegQueryValueExW)) \
735 RTS_WIN64_ONLY(SymI_HasProto(RegQueryValueW)) \
736 RTS_WIN64_ONLY(SymI_HasProto(RegReplaceKeyW)) \
737 RTS_WIN64_ONLY(SymI_HasProto(RegRestoreKeyW)) \
738 RTS_WIN64_ONLY(SymI_HasProto(RegSaveKeyW)) \
739 RTS_WIN64_ONLY(SymI_HasProto(RegSetValueExW)) \
740 RTS_WIN64_ONLY(SymI_HasProto(RegSetValueW)) \
741 RTS_WIN64_ONLY(SymI_HasProto(RegUnLoadKeyW)) \
742 RTS_WIN64_ONLY(SymI_NeedsProto(SHGetFolderPathW)) \
743 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_SetWindowLongPtrW)) \
744 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetWindowLongPtrW)) \
745 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_MenuItemFromPoint)) \
746 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_ChildWindowFromPoint)) \
747 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_ChildWindowFromPointEx)) \
748 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_DeleteObject)) \
749 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_UnmapViewOfFile)) \
750 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_CloseHandle)) \
751 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_FreeLibrary)) \
752 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetMessageW)) \
753 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_TranslateMessage)) \
754 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_DispatchMessageW)) \
755 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_DefWindowProcW)) \
756 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetDIBits)) \
757 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GlobalAlloc)) \
758 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GlobalFree)) \
759 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_CreateFileW)) \
760 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_WriteFile)) \
761 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_CreateCompatibleBitmap)) \
762 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_SelectObject)) \
763 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_Polygon)) \
764 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_FormatMessageW)) \
765 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__localtime64)) \
766 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__tzname)) \
767 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__timezone)) \
768 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_CreatePipe)) \
769 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_SetHandleInformation)) \
770 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetStdHandle)) \
771 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetCurrentProcess)) \
772 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_DuplicateHandle)) \
773 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_CreateProcessW)) \
774 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_TerminateProcess)) \
775 RTS_WIN64_ONLY(SymI_NeedsProto(__imp__open_osfhandle)) \
776 RTS_WIN64_ONLY(SymI_NeedsProto(__imp_GetExitCodeProcess)) \
777 RTS_MINGW_GETTIMEOFDAY_SYM \
778 SymI_NeedsProto(closedir)
779
780 #else
781 #define RTS_MINGW_ONLY_SYMBOLS /**/
782 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
783 #endif
784
785
786 #if defined(darwin_HOST_OS) && HAVE_PRINTF_LDBLSTUB
787 #define RTS_DARWIN_ONLY_SYMBOLS \
788 SymI_NeedsProto(asprintf$LDBLStub) \
789 SymI_NeedsProto(err$LDBLStub) \
790 SymI_NeedsProto(errc$LDBLStub) \
791 SymI_NeedsProto(errx$LDBLStub) \
792 SymI_NeedsProto(fprintf$LDBLStub) \
793 SymI_NeedsProto(fscanf$LDBLStub) \
794 SymI_NeedsProto(fwprintf$LDBLStub) \
795 SymI_NeedsProto(fwscanf$LDBLStub) \
796 SymI_NeedsProto(printf$LDBLStub) \
797 SymI_NeedsProto(scanf$LDBLStub) \
798 SymI_NeedsProto(snprintf$LDBLStub) \
799 SymI_NeedsProto(sprintf$LDBLStub) \
800 SymI_NeedsProto(sscanf$LDBLStub) \
801 SymI_NeedsProto(strtold$LDBLStub) \
802 SymI_NeedsProto(swprintf$LDBLStub) \
803 SymI_NeedsProto(swscanf$LDBLStub) \
804 SymI_NeedsProto(syslog$LDBLStub) \
805 SymI_NeedsProto(vasprintf$LDBLStub) \
806 SymI_NeedsProto(verr$LDBLStub) \
807 SymI_NeedsProto(verrc$LDBLStub) \
808 SymI_NeedsProto(verrx$LDBLStub) \
809 SymI_NeedsProto(vfprintf$LDBLStub) \
810 SymI_NeedsProto(vfscanf$LDBLStub) \
811 SymI_NeedsProto(vfwprintf$LDBLStub) \
812 SymI_NeedsProto(vfwscanf$LDBLStub) \
813 SymI_NeedsProto(vprintf$LDBLStub) \
814 SymI_NeedsProto(vscanf$LDBLStub) \
815 SymI_NeedsProto(vsnprintf$LDBLStub) \
816 SymI_NeedsProto(vsprintf$LDBLStub) \
817 SymI_NeedsProto(vsscanf$LDBLStub) \
818 SymI_NeedsProto(vswprintf$LDBLStub) \
819 SymI_NeedsProto(vswscanf$LDBLStub) \
820 SymI_NeedsProto(vsyslog$LDBLStub) \
821 SymI_NeedsProto(vwarn$LDBLStub) \
822 SymI_NeedsProto(vwarnc$LDBLStub) \
823 SymI_NeedsProto(vwarnx$LDBLStub) \
824 SymI_NeedsProto(vwprintf$LDBLStub) \
825 SymI_NeedsProto(vwscanf$LDBLStub) \
826 SymI_NeedsProto(warn$LDBLStub) \
827 SymI_NeedsProto(warnc$LDBLStub) \
828 SymI_NeedsProto(warnx$LDBLStub) \
829 SymI_NeedsProto(wcstold$LDBLStub) \
830 SymI_NeedsProto(wprintf$LDBLStub) \
831 SymI_NeedsProto(wscanf$LDBLStub)
832 #else
833 #define RTS_DARWIN_ONLY_SYMBOLS
834 #endif
835
836 #ifndef SMP
837 # define MAIN_CAP_SYM SymI_HasProto(MainCapability)
838 #else
839 # define MAIN_CAP_SYM
840 #endif
841
842 #if !defined(mingw32_HOST_OS)
843 #define RTS_USER_SIGNALS_SYMBOLS \
844 SymI_HasProto(setIOManagerControlFd) \
845 SymI_HasProto(setIOManagerWakeupFd) \
846 SymI_HasProto(ioManagerWakeup) \
847 SymI_HasProto(blockUserSignals) \
848 SymI_HasProto(unblockUserSignals)
849 #else
850 #define RTS_USER_SIGNALS_SYMBOLS \
851 SymI_HasProto(ioManagerWakeup) \
852 SymI_HasProto(sendIOManagerEvent) \
853 SymI_HasProto(readIOManagerEvent) \
854 SymI_HasProto(getIOManagerEvent) \
855 SymI_HasProto(console_handler)
856 #endif
857
858 #define RTS_LIBFFI_SYMBOLS \
859 SymE_NeedsProto(ffi_prep_cif) \
860 SymE_NeedsProto(ffi_call) \
861 SymE_NeedsProto(ffi_type_void) \
862 SymE_NeedsProto(ffi_type_float) \
863 SymE_NeedsProto(ffi_type_double) \
864 SymE_NeedsProto(ffi_type_sint64) \
865 SymE_NeedsProto(ffi_type_uint64) \
866 SymE_NeedsProto(ffi_type_sint32) \
867 SymE_NeedsProto(ffi_type_uint32) \
868 SymE_NeedsProto(ffi_type_sint16) \
869 SymE_NeedsProto(ffi_type_uint16) \
870 SymE_NeedsProto(ffi_type_sint8) \
871 SymE_NeedsProto(ffi_type_uint8) \
872 SymE_NeedsProto(ffi_type_pointer)
873
874 #ifdef TABLES_NEXT_TO_CODE
875 #define RTS_RET_SYMBOLS /* nothing */
876 #else
877 #define RTS_RET_SYMBOLS \
878 SymI_HasProto(stg_enter_ret) \
879 SymI_HasProto(stg_gc_fun_ret) \
880 SymI_HasProto(stg_ap_v_ret) \
881 SymI_HasProto(stg_ap_f_ret) \
882 SymI_HasProto(stg_ap_d_ret) \
883 SymI_HasProto(stg_ap_l_ret) \
884 SymI_HasProto(stg_ap_v16_ret) \
885 SymI_HasProto(stg_ap_n_ret) \
886 SymI_HasProto(stg_ap_p_ret) \
887 SymI_HasProto(stg_ap_pv_ret) \
888 SymI_HasProto(stg_ap_pp_ret) \
889 SymI_HasProto(stg_ap_ppv_ret) \
890 SymI_HasProto(stg_ap_ppp_ret) \
891 SymI_HasProto(stg_ap_pppv_ret) \
892 SymI_HasProto(stg_ap_pppp_ret) \
893 SymI_HasProto(stg_ap_ppppp_ret) \
894 SymI_HasProto(stg_ap_pppppp_ret)
895 #endif
896
897 /* Modules compiled with -ticky may mention ticky counters */
898 /* This list should marry up with the one in $(TOP)/includes/stg/Ticky.h */
899 #define RTS_TICKY_SYMBOLS \
900 SymI_NeedsProto(ticky_entry_ctrs) \
901 SymI_NeedsProto(top_ct) \
902 \
903 SymI_HasProto(ENT_VIA_NODE_ctr) \
904 SymI_HasProto(ENT_STATIC_THK_ctr) \
905 SymI_HasProto(ENT_DYN_THK_ctr) \
906 SymI_HasProto(ENT_STATIC_FUN_DIRECT_ctr) \
907 SymI_HasProto(ENT_DYN_FUN_DIRECT_ctr) \
908 SymI_HasProto(ENT_STATIC_CON_ctr) \
909 SymI_HasProto(ENT_DYN_CON_ctr) \
910 SymI_HasProto(ENT_STATIC_IND_ctr) \
911 SymI_HasProto(ENT_DYN_IND_ctr) \
912 SymI_HasProto(ENT_PERM_IND_ctr) \
913 SymI_HasProto(ENT_PAP_ctr) \
914 SymI_HasProto(ENT_AP_ctr) \
915 SymI_HasProto(ENT_AP_STACK_ctr) \
916 SymI_HasProto(ENT_BH_ctr) \
917 SymI_HasProto(ENT_LNE_ctr) \
918 SymI_HasProto(UNKNOWN_CALL_ctr) \
919 SymI_HasProto(SLOW_CALL_fast_v16_ctr) \
920 SymI_HasProto(SLOW_CALL_fast_v_ctr) \
921 SymI_HasProto(SLOW_CALL_fast_f_ctr) \
922 SymI_HasProto(SLOW_CALL_fast_d_ctr) \
923 SymI_HasProto(SLOW_CALL_fast_l_ctr) \
924 SymI_HasProto(SLOW_CALL_fast_n_ctr) \
925 SymI_HasProto(SLOW_CALL_fast_p_ctr) \
926 SymI_HasProto(SLOW_CALL_fast_pv_ctr) \
927 SymI_HasProto(SLOW_CALL_fast_pp_ctr) \
928 SymI_HasProto(SLOW_CALL_fast_ppv_ctr) \
929 SymI_HasProto(SLOW_CALL_fast_ppp_ctr) \
930 SymI_HasProto(SLOW_CALL_fast_pppv_ctr) \
931 SymI_HasProto(SLOW_CALL_fast_pppp_ctr) \
932 SymI_HasProto(SLOW_CALL_fast_ppppp_ctr) \
933 SymI_HasProto(SLOW_CALL_fast_pppppp_ctr) \
934 SymI_HasProto(VERY_SLOW_CALL_ctr) \
935 SymI_HasProto(ticky_slow_call_unevald) \
936 SymI_HasProto(SLOW_CALL_ctr) \
937 SymI_HasProto(MULTI_CHUNK_SLOW_CALL_ctr) \
938 SymI_HasProto(MULTI_CHUNK_SLOW_CALL_CHUNKS_ctr) \
939 SymI_HasProto(KNOWN_CALL_ctr) \
940 SymI_HasProto(KNOWN_CALL_TOO_FEW_ARGS_ctr) \
941 SymI_HasProto(KNOWN_CALL_EXTRA_ARGS_ctr) \
942 SymI_HasProto(SLOW_CALL_FUN_TOO_FEW_ctr) \
943 SymI_HasProto(SLOW_CALL_FUN_CORRECT_ctr) \
944 SymI_HasProto(SLOW_CALL_FUN_TOO_MANY_ctr) \
945 SymI_HasProto(SLOW_CALL_PAP_TOO_FEW_ctr) \
946 SymI_HasProto(SLOW_CALL_PAP_CORRECT_ctr) \
947 SymI_HasProto(SLOW_CALL_PAP_TOO_MANY_ctr) \
948 SymI_HasProto(SLOW_CALL_UNEVALD_ctr) \
949 SymI_HasProto(UPDF_OMITTED_ctr) \
950 SymI_HasProto(UPDF_PUSHED_ctr) \
951 SymI_HasProto(CATCHF_PUSHED_ctr) \
952 SymI_HasProto(UPDF_RCC_PUSHED_ctr) \
953 SymI_HasProto(UPDF_RCC_OMITTED_ctr) \
954 SymI_HasProto(UPD_SQUEEZED_ctr) \
955 SymI_HasProto(UPD_CON_IN_NEW_ctr) \
956 SymI_HasProto(UPD_CON_IN_PLACE_ctr) \
957 SymI_HasProto(UPD_PAP_IN_NEW_ctr) \
958 SymI_HasProto(UPD_PAP_IN_PLACE_ctr) \
959 SymI_HasProto(ALLOC_HEAP_ctr) \
960 SymI_HasProto(ALLOC_HEAP_tot) \
961 SymI_HasProto(HEAP_CHK_ctr) \
962 SymI_HasProto(STK_CHK_ctr) \
963 SymI_HasProto(ALLOC_RTS_ctr) \
964 SymI_HasProto(ALLOC_RTS_tot) \
965 SymI_HasProto(ALLOC_FUN_ctr) \
966 SymI_HasProto(ALLOC_FUN_adm) \
967 SymI_HasProto(ALLOC_FUN_gds) \
968 SymI_HasProto(ALLOC_FUN_slp) \
969 SymI_HasProto(UPD_NEW_IND_ctr) \
970 SymI_HasProto(UPD_NEW_PERM_IND_ctr) \
971 SymI_HasProto(UPD_OLD_IND_ctr) \
972 SymI_HasProto(UPD_OLD_PERM_IND_ctr) \
973 SymI_HasProto(UPD_BH_UPDATABLE_ctr) \
974 SymI_HasProto(UPD_BH_SINGLE_ENTRY_ctr) \
975 SymI_HasProto(UPD_CAF_BH_UPDATABLE_ctr) \
976 SymI_HasProto(UPD_CAF_BH_SINGLE_ENTRY_ctr) \
977 SymI_HasProto(GC_SEL_ABANDONED_ctr) \
978 SymI_HasProto(GC_SEL_MINOR_ctr) \
979 SymI_HasProto(GC_SEL_MAJOR_ctr) \
980 SymI_HasProto(GC_FAILED_PROMOTION_ctr) \
981 SymI_HasProto(ALLOC_UP_THK_ctr) \
982 SymI_HasProto(ALLOC_SE_THK_ctr) \
983 SymI_HasProto(ALLOC_THK_adm) \
984 SymI_HasProto(ALLOC_THK_gds) \
985 SymI_HasProto(ALLOC_THK_slp) \
986 SymI_HasProto(ALLOC_CON_ctr) \
987 SymI_HasProto(ALLOC_CON_adm) \
988 SymI_HasProto(ALLOC_CON_gds) \
989 SymI_HasProto(ALLOC_CON_slp) \
990 SymI_HasProto(ALLOC_TUP_ctr) \
991 SymI_HasProto(ALLOC_TUP_adm) \
992 SymI_HasProto(ALLOC_TUP_gds) \
993 SymI_HasProto(ALLOC_TUP_slp) \
994 SymI_HasProto(ALLOC_BH_ctr) \
995 SymI_HasProto(ALLOC_BH_adm) \
996 SymI_HasProto(ALLOC_BH_gds) \
997 SymI_HasProto(ALLOC_BH_slp) \
998 SymI_HasProto(ALLOC_PRIM_ctr) \
999 SymI_HasProto(ALLOC_PRIM_adm) \
1000 SymI_HasProto(ALLOC_PRIM_gds) \
1001 SymI_HasProto(ALLOC_PRIM_slp) \
1002 SymI_HasProto(ALLOC_PAP_ctr) \
1003 SymI_HasProto(ALLOC_PAP_adm) \
1004 SymI_HasProto(ALLOC_PAP_gds) \
1005 SymI_HasProto(ALLOC_PAP_slp) \
1006 SymI_HasProto(ALLOC_TSO_ctr) \
1007 SymI_HasProto(ALLOC_TSO_adm) \
1008 SymI_HasProto(ALLOC_TSO_gds) \
1009 SymI_HasProto(ALLOC_TSO_slp) \
1010 SymI_HasProto(RET_NEW_ctr) \
1011 SymI_HasProto(RET_OLD_ctr) \
1012 SymI_HasProto(RET_UNBOXED_TUP_ctr) \
1013 SymI_HasProto(RET_SEMI_loads_avoided)
1014
1015
1016 // On most platforms, the garbage collector rewrites references
1017 // to small integer and char objects to a set of common, shared ones.
1018 //
1019 // We don't do this when compiling to Windows DLLs at the moment because
1020 // it doesn't support cross package data references well.
1021 //
1022 #if defined(COMPILING_WINDOWS_DLL)
1023 #define RTS_INTCHAR_SYMBOLS
1024 #else
1025 #define RTS_INTCHAR_SYMBOLS \
1026 SymI_HasProto(stg_CHARLIKE_closure) \
1027 SymI_HasProto(stg_INTLIKE_closure)
1028 #endif
1029
1030
1031 #define RTS_SYMBOLS \
1032 Maybe_Stable_Names \
1033 RTS_TICKY_SYMBOLS \
1034 SymI_HasProto(StgReturn) \
1035 SymI_HasProto(stg_gc_noregs) \
1036 SymI_HasProto(stg_ret_v_info) \
1037 SymI_HasProto(stg_ret_p_info) \
1038 SymI_HasProto(stg_ret_n_info) \
1039 SymI_HasProto(stg_ret_f_info) \
1040 SymI_HasProto(stg_ret_d_info) \
1041 SymI_HasProto(stg_ret_l_info) \
1042 SymI_HasProto(stg_gc_prim_p) \
1043 SymI_HasProto(stg_gc_prim_pp) \
1044 SymI_HasProto(stg_gc_prim_n) \
1045 SymI_HasProto(stg_enter_info) \
1046 SymI_HasProto(__stg_gc_enter_1) \
1047 SymI_HasProto(stg_gc_unpt_r1) \
1048 SymI_HasProto(stg_gc_unbx_r1) \
1049 SymI_HasProto(stg_gc_f1) \
1050 SymI_HasProto(stg_gc_d1) \
1051 SymI_HasProto(stg_gc_l1) \
1052 SymI_HasProto(stg_gc_pp) \
1053 SymI_HasProto(stg_gc_ppp) \
1054 SymI_HasProto(stg_gc_pppp) \
1055 SymI_HasProto(__stg_gc_fun) \
1056 SymI_HasProto(stg_gc_fun_info) \
1057 SymI_HasProto(stg_yield_noregs) \
1058 SymI_HasProto(stg_yield_to_interpreter) \
1059 SymI_HasProto(stg_block_noregs) \
1060 SymI_HasProto(stg_block_takemvar) \
1061 SymI_HasProto(stg_block_putmvar) \
1062 MAIN_CAP_SYM \
1063 SymI_HasProto(MallocFailHook) \
1064 SymI_HasProto(OnExitHook) \
1065 SymI_HasProto(OutOfHeapHook) \
1066 SymI_HasProto(StackOverflowHook) \
1067 SymI_HasProto(addDLL) \
1068 SymI_HasProto(__int_encodeDouble) \
1069 SymI_HasProto(__word_encodeDouble) \
1070 SymI_HasProto(__2Int_encodeDouble) \
1071 SymI_HasProto(__int_encodeFloat) \
1072 SymI_HasProto(__word_encodeFloat) \
1073 SymI_HasProto(stg_atomicallyzh) \
1074 SymI_HasProto(barf) \
1075 SymI_HasProto(debugBelch) \
1076 SymI_HasProto(errorBelch) \
1077 SymI_HasProto(sysErrorBelch) \
1078 SymI_HasProto(stg_getMaskingStatezh) \
1079 SymI_HasProto(stg_maskAsyncExceptionszh) \
1080 SymI_HasProto(stg_maskUninterruptiblezh) \
1081 SymI_HasProto(stg_catchzh) \
1082 SymI_HasProto(stg_catchRetryzh) \
1083 SymI_HasProto(stg_catchSTMzh) \
1084 SymI_HasProto(stg_checkzh) \
1085 SymI_HasProto(closure_flags) \
1086 SymI_HasProto(cmp_thread) \
1087 SymI_HasProto(createAdjustor) \
1088 SymI_HasProto(stg_decodeDoublezu2Intzh) \
1089 SymI_HasProto(stg_decodeFloatzuIntzh) \
1090 SymI_HasProto(defaultsHook) \
1091 SymI_HasProto(stg_delayzh) \
1092 SymI_HasProto(stg_deRefWeakzh) \
1093 SymI_HasProto(stg_deRefStablePtrzh) \
1094 SymI_HasProto(dirty_MUT_VAR) \
1095 SymI_HasProto(dirty_TVAR) \
1096 SymI_HasProto(stg_forkzh) \
1097 SymI_HasProto(stg_forkOnzh) \
1098 SymI_HasProto(forkProcess) \
1099 SymI_HasProto(forkOS_createThread) \
1100 SymI_HasProto(freeHaskellFunctionPtr) \
1101 SymI_HasProto(getOrSetGHCConcSignalSignalHandlerStore) \
1102 SymI_HasProto(getOrSetGHCConcWindowsPendingDelaysStore) \
1103 SymI_HasProto(getOrSetGHCConcWindowsIOManagerThreadStore) \
1104 SymI_HasProto(getOrSetGHCConcWindowsProddingStore) \
1105 SymI_HasProto(getOrSetSystemEventThreadEventManagerStore) \
1106 SymI_HasProto(getOrSetSystemEventThreadIOManagerThreadStore) \
1107 SymI_HasProto(getOrSetSystemTimerThreadEventManagerStore) \
1108 SymI_HasProto(getOrSetSystemTimerThreadIOManagerThreadStore) \
1109 SymI_HasProto(getGCStats) \
1110 SymI_HasProto(getGCStatsEnabled) \
1111 SymI_HasProto(genSymZh) \
1112 SymI_HasProto(genericRaise) \
1113 SymI_HasProto(getProgArgv) \
1114 SymI_HasProto(getFullProgArgv) \
1115 SymI_HasProto(getStablePtr) \
1116 SymI_HasProto(hs_init) \
1117 SymI_HasProto(hs_exit) \
1118 SymI_HasProto(hs_set_argv) \
1119 SymI_HasProto(hs_add_root) \
1120 SymI_HasProto(hs_perform_gc) \
1121 SymI_HasProto(hs_lock_stable_tables) \
1122 SymI_HasProto(hs_unlock_stable_tables) \
1123 SymI_HasProto(hs_free_stable_ptr) \
1124 SymI_HasProto(hs_free_stable_ptr_unsafe) \
1125 SymI_HasProto(hs_free_fun_ptr) \
1126 SymI_HasProto(hs_hpc_rootModule) \
1127 SymI_HasProto(hs_hpc_module) \
1128 SymI_HasProto(initLinker) \
1129 SymI_HasProto(stg_unpackClosurezh) \
1130 SymI_HasProto(stg_getApStackValzh) \
1131 SymI_HasProto(stg_getSparkzh) \
1132 SymI_HasProto(stg_numSparkszh) \
1133 SymI_HasProto(stg_isCurrentThreadBoundzh) \
1134 SymI_HasProto(stg_isEmptyMVarzh) \
1135 SymI_HasProto(stg_killThreadzh) \
1136 SymI_HasProto(loadArchive) \
1137 SymI_HasProto(loadObj) \
1138 SymI_HasProto(insertStableSymbol) \
1139 SymI_HasProto(insertSymbol) \
1140 SymI_HasProto(lookupSymbol) \
1141 SymI_HasProto(stg_makeStablePtrzh) \
1142 SymI_HasProto(stg_mkApUpd0zh) \
1143 SymI_HasProto(stg_myThreadIdzh) \
1144 SymI_HasProto(stg_labelThreadzh) \
1145 SymI_HasProto(stg_newArrayzh) \
1146 SymI_HasProto(stg_newArrayArrayzh) \
1147 SymI_HasProto(stg_newBCOzh) \
1148 SymI_HasProto(stg_newByteArrayzh) \
1149 SymI_HasProto_redirect(newCAF, newDynCAF) \
1150 SymI_HasProto(stg_newMVarzh) \
1151 SymI_HasProto(stg_newMutVarzh) \
1152 SymI_HasProto(stg_newTVarzh) \
1153 SymI_HasProto(stg_noDuplicatezh) \
1154 SymI_HasProto(stg_atomicModifyMutVarzh) \
1155 SymI_HasProto(stg_casMutVarzh) \
1156 SymI_HasProto(stg_newPinnedByteArrayzh) \
1157 SymI_HasProto(stg_newAlignedPinnedByteArrayzh) \
1158 SymI_HasProto(newSpark) \
1159 SymI_HasProto(performGC) \
1160 SymI_HasProto(performMajorGC) \
1161 SymI_HasProto(prog_argc) \
1162 SymI_HasProto(prog_argv) \
1163 SymI_HasProto(stg_putMVarzh) \
1164 SymI_HasProto(stg_raisezh) \
1165 SymI_HasProto(stg_raiseIOzh) \
1166 SymI_HasProto(stg_readTVarzh) \
1167 SymI_HasProto(stg_readTVarIOzh) \
1168 SymI_HasProto(resumeThread) \
1169 SymI_HasProto(setNumCapabilities) \
1170 SymI_HasProto(getNumberOfProcessors) \
1171 SymI_HasProto(resolveObjs) \
1172 SymI_HasProto(stg_retryzh) \
1173 SymI_HasProto(rts_apply) \
1174 SymI_HasProto(rts_checkSchedStatus) \
1175 SymI_HasProto(rts_eval) \
1176 SymI_HasProto(rts_evalIO) \
1177 SymI_HasProto(rts_evalLazyIO) \
1178 SymI_HasProto(rts_evalStableIO) \
1179 SymI_HasProto(rts_eval_) \
1180 SymI_HasProto(rts_getBool) \
1181 SymI_HasProto(rts_getChar) \
1182 SymI_HasProto(rts_getDouble) \
1183 SymI_HasProto(rts_getFloat) \
1184 SymI_HasProto(rts_getInt) \
1185 SymI_HasProto(rts_getInt8) \
1186 SymI_HasProto(rts_getInt16) \
1187 SymI_HasProto(rts_getInt32) \
1188 SymI_HasProto(rts_getInt64) \
1189 SymI_HasProto(rts_getPtr) \
1190 SymI_HasProto(rts_getFunPtr) \
1191 SymI_HasProto(rts_getStablePtr) \
1192 SymI_HasProto(rts_getThreadId) \
1193 SymI_HasProto(rts_getWord) \
1194 SymI_HasProto(rts_getWord8) \
1195 SymI_HasProto(rts_getWord16) \
1196 SymI_HasProto(rts_getWord32) \
1197 SymI_HasProto(rts_getWord64) \
1198 SymI_HasProto(rts_lock) \
1199 SymI_HasProto(rts_mkBool) \
1200 SymI_HasProto(rts_mkChar) \
1201 SymI_HasProto(rts_mkDouble) \
1202 SymI_HasProto(rts_mkFloat) \
1203 SymI_HasProto(rts_mkInt) \
1204 SymI_HasProto(rts_mkInt8) \
1205 SymI_HasProto(rts_mkInt16) \
1206 SymI_HasProto(rts_mkInt32) \
1207 SymI_HasProto(rts_mkInt64) \
1208 SymI_HasProto(rts_mkPtr) \
1209 SymI_HasProto(rts_mkFunPtr) \
1210 SymI_HasProto(rts_mkStablePtr) \
1211 SymI_HasProto(rts_mkString) \
1212 SymI_HasProto(rts_mkWord) \
1213 SymI_HasProto(rts_mkWord8) \
1214 SymI_HasProto(rts_mkWord16) \
1215 SymI_HasProto(rts_mkWord32) \
1216 SymI_HasProto(rts_mkWord64) \
1217 SymI_HasProto(rts_unlock) \
1218 SymI_HasProto(rts_unsafeGetMyCapability) \
1219 SymI_HasProto(rtsSupportsBoundThreads) \
1220 SymI_HasProto(rts_isProfiled) \
1221 SymI_HasProto(setProgArgv) \
1222 SymI_HasProto(startupHaskell) \
1223 SymI_HasProto(shutdownHaskell) \
1224 SymI_HasProto(shutdownHaskellAndExit) \
1225 SymI_HasProto(stable_name_table) \
1226 SymI_HasProto(stable_ptr_table) \
1227 SymI_HasProto(stackOverflow) \
1228 SymI_HasProto(stg_CAF_BLACKHOLE_info) \
1229 SymI_HasProto(stg_BLACKHOLE_info) \
1230 SymI_HasProto(__stg_EAGER_BLACKHOLE_info) \
1231 SymI_HasProto(stg_BLOCKING_QUEUE_CLEAN_info) \
1232 SymI_HasProto(stg_BLOCKING_QUEUE_DIRTY_info) \
1233 SymI_HasProto(startTimer) \
1234 SymI_HasProto(stg_MVAR_CLEAN_info) \
1235 SymI_HasProto(stg_MVAR_DIRTY_info) \
1236 SymI_HasProto(stg_TVAR_CLEAN_info) \
1237 SymI_HasProto(stg_TVAR_DIRTY_info) \
1238 SymI_HasProto(stg_IND_STATIC_info) \
1239 SymI_HasProto(stg_ARR_WORDS_info) \
1240 SymI_HasProto(stg_MUT_ARR_PTRS_DIRTY_info) \
1241 SymI_HasProto(stg_MUT_ARR_PTRS_FROZEN_info) \
1242 SymI_HasProto(stg_MUT_ARR_PTRS_FROZEN0_info) \
1243 SymI_HasProto(stg_WEAK_info) \
1244 SymI_HasProto(stg_ap_v_info) \
1245 SymI_HasProto(stg_ap_f_info) \
1246 SymI_HasProto(stg_ap_d_info) \
1247 SymI_HasProto(stg_ap_l_info) \
1248 SymI_HasProto(stg_ap_v16_info) \
1249 SymI_HasProto(stg_ap_n_info) \
1250 SymI_HasProto(stg_ap_p_info) \
1251 SymI_HasProto(stg_ap_pv_info) \
1252 SymI_HasProto(stg_ap_pp_info) \
1253 SymI_HasProto(stg_ap_ppv_info) \
1254 SymI_HasProto(stg_ap_ppp_info) \
1255 SymI_HasProto(stg_ap_pppv_info) \
1256 SymI_HasProto(stg_ap_pppp_info) \
1257 SymI_HasProto(stg_ap_ppppp_info) \
1258 SymI_HasProto(stg_ap_pppppp_info) \
1259 SymI_HasProto(stg_ap_0_fast) \
1260 SymI_HasProto(stg_ap_v_fast) \
1261 SymI_HasProto(stg_ap_f_fast) \
1262 SymI_HasProto(stg_ap_d_fast) \
1263 SymI_HasProto(stg_ap_l_fast) \
1264 SymI_HasProto(stg_ap_v16_fast) \
1265 SymI_HasProto(stg_ap_n_fast) \
1266 SymI_HasProto(stg_ap_p_fast) \
1267 SymI_HasProto(stg_ap_pv_fast) \
1268 SymI_HasProto(stg_ap_pp_fast) \
1269 SymI_HasProto(stg_ap_ppv_fast) \
1270 SymI_HasProto(stg_ap_ppp_fast) \
1271 SymI_HasProto(stg_ap_pppv_fast) \
1272 SymI_HasProto(stg_ap_pppp_fast) \
1273 SymI_HasProto(stg_ap_ppppp_fast) \
1274 SymI_HasProto(stg_ap_pppppp_fast) \
1275 SymI_HasProto(stg_ap_1_upd_info) \
1276 SymI_HasProto(stg_ap_2_upd_info) \
1277 SymI_HasProto(stg_ap_3_upd_info) \
1278 SymI_HasProto(stg_ap_4_upd_info) \
1279 SymI_HasProto(stg_ap_5_upd_info) \
1280 SymI_HasProto(stg_ap_6_upd_info) \
1281 SymI_HasProto(stg_ap_7_upd_info) \
1282 SymI_HasProto(stg_exit) \
1283 SymI_HasProto(stg_sel_0_upd_info) \
1284 SymI_HasProto(stg_sel_10_upd_info) \
1285 SymI_HasProto(stg_sel_11_upd_info) \
1286 SymI_HasProto(stg_sel_12_upd_info) \
1287 SymI_HasProto(stg_sel_13_upd_info) \
1288 SymI_HasProto(stg_sel_14_upd_info) \
1289 SymI_HasProto(stg_sel_15_upd_info) \
1290 SymI_HasProto(stg_sel_1_upd_info) \
1291 SymI_HasProto(stg_sel_2_upd_info) \
1292 SymI_HasProto(stg_sel_3_upd_info) \
1293 SymI_HasProto(stg_sel_4_upd_info) \
1294 SymI_HasProto(stg_sel_5_upd_info) \
1295 SymI_HasProto(stg_sel_6_upd_info) \
1296 SymI_HasProto(stg_sel_7_upd_info) \
1297 SymI_HasProto(stg_sel_8_upd_info) \
1298 SymI_HasProto(stg_sel_9_upd_info) \
1299 SymI_HasProto(stg_upd_frame_info) \
1300 SymI_HasProto(stg_bh_upd_frame_info) \
1301 SymI_HasProto(suspendThread) \
1302 SymI_HasProto(stg_takeMVarzh) \
1303 SymI_HasProto(stg_threadStatuszh) \
1304 SymI_HasProto(stg_tryPutMVarzh) \
1305 SymI_HasProto(stg_tryTakeMVarzh) \
1306 SymI_HasProto(stg_unmaskAsyncExceptionszh) \
1307 SymI_HasProto(unloadObj) \
1308 SymI_HasProto(stg_unsafeThawArrayzh) \
1309 SymI_HasProto(stg_waitReadzh) \
1310 SymI_HasProto(stg_waitWritezh) \
1311 SymI_HasProto(stg_writeTVarzh) \
1312 SymI_HasProto(stg_yieldzh) \
1313 SymI_NeedsProto(stg_interp_constr_entry) \
1314 SymI_HasProto(stg_arg_bitmaps) \
1315 SymI_HasProto(large_alloc_lim) \
1316 SymI_HasProto(g0) \
1317 SymI_HasProto(allocate) \
1318 SymI_HasProto(allocateExec) \
1319 SymI_HasProto(freeExec) \
1320 SymI_HasProto(getAllocations) \
1321 SymI_HasProto(revertCAFs) \
1322 SymI_HasProto(RtsFlags) \
1323 SymI_NeedsProto(rts_breakpoint_io_action) \
1324 SymI_NeedsProto(rts_stop_next_breakpoint) \
1325 SymI_NeedsProto(rts_stop_on_exception) \
1326 SymI_HasProto(stopTimer) \
1327 SymI_HasProto(n_capabilities) \
1328 SymI_HasProto(enabled_capabilities) \
1329 SymI_HasProto(stg_traceCcszh) \
1330 SymI_HasProto(stg_traceEventzh) \
1331 SymI_HasProto(stg_traceMarkerzh) \
1332 SymI_HasProto(getMonotonicNSec) \
1333 SymI_HasProto(lockFile) \
1334 SymI_HasProto(unlockFile) \
1335 SymI_HasProto(startProfTimer) \
1336 SymI_HasProto(stopProfTimer) \
1337 RTS_USER_SIGNALS_SYMBOLS \
1338 RTS_INTCHAR_SYMBOLS
1339
1340
1341 // 64-bit support functions in libgcc.a
1342 #if defined(__GNUC__) && SIZEOF_VOID_P <= 4 && !defined(_ABIN32)
1343 #define RTS_LIBGCC_SYMBOLS \
1344 SymI_NeedsProto(__divdi3) \
1345 SymI_NeedsProto(__udivdi3) \
1346 SymI_NeedsProto(__moddi3) \
1347 SymI_NeedsProto(__umoddi3) \
1348 SymI_NeedsProto(__muldi3) \
1349 SymI_NeedsProto(__ashldi3) \
1350 SymI_NeedsProto(__ashrdi3) \
1351 SymI_NeedsProto(__lshrdi3) \
1352 SymI_NeedsProto(__fixunsdfdi)
1353 #else
1354 #define RTS_LIBGCC_SYMBOLS
1355 #endif
1356
1357 #if defined(darwin_HOST_OS) && defined(powerpc_HOST_ARCH)
1358 // Symbols that don't have a leading underscore
1359 // on Mac OS X. They have to receive special treatment,
1360 // see machoInitSymbolsWithoutUnderscore()
1361 #define RTS_MACHO_NOUNDERLINE_SYMBOLS \
1362 SymI_NeedsProto(saveFP) \
1363 SymI_NeedsProto(restFP)
1364 #endif
1365
1366 /* entirely bogus claims about types of these symbols */
1367 #define SymI_NeedsProto(vvv) extern void vvv(void);
1368 #if defined(COMPILING_WINDOWS_DLL)
1369 #define SymE_HasProto(vvv) SymE_HasProto(vvv);
1370 # if defined(x86_64_HOST_ARCH)
1371 # define SymE_NeedsProto(vvv) extern void __imp_ ## vvv (void);
1372 # else
1373 # define SymE_NeedsProto(vvv) extern void _imp__ ## vvv (void);
1374 # endif
1375 #else
1376 #define SymE_NeedsProto(vvv) SymI_NeedsProto(vvv);
1377 #define SymE_HasProto(vvv) SymI_HasProto(vvv)
1378 #endif
1379 #define SymI_HasProto(vvv) /**/
1380 #define SymI_HasProto_redirect(vvv,xxx) /**/
1381 RTS_SYMBOLS
1382 RTS_RET_SYMBOLS
1383 RTS_POSIX_ONLY_SYMBOLS
1384 RTS_MINGW_ONLY_SYMBOLS
1385 RTS_CYGWIN_ONLY_SYMBOLS
1386 RTS_DARWIN_ONLY_SYMBOLS
1387 RTS_LIBGCC_SYMBOLS
1388 RTS_LIBFFI_SYMBOLS
1389 #undef SymI_NeedsProto
1390 #undef SymI_HasProto
1391 #undef SymI_HasProto_redirect
1392 #undef SymE_HasProto
1393 #undef SymE_NeedsProto
1394
1395 #ifdef LEADING_UNDERSCORE
1396 #define MAYBE_LEADING_UNDERSCORE_STR(s) ("_" s)
1397 #else
1398 #define MAYBE_LEADING_UNDERSCORE_STR(s) (s)
1399 #endif
1400
1401 #define SymI_HasProto(vvv) { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
1402 (void*)(&(vvv)) },
1403 #define SymE_HasProto(vvv) { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
1404 (void*)DLL_IMPORT_DATA_REF(vvv) },
1405
1406 #define SymI_NeedsProto(vvv) SymI_HasProto(vvv)
1407 #define SymE_NeedsProto(vvv) SymE_HasProto(vvv)
1408
1409 // SymI_HasProto_redirect allows us to redirect references to one symbol to
1410 // another symbol. See newCAF/newDynCAF for an example.
1411 #define SymI_HasProto_redirect(vvv,xxx) \
1412 { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
1413 (void*)(&(xxx)) },
1414
1415 static RtsSymbolVal rtsSyms[] = {
1416 RTS_SYMBOLS
1417 RTS_RET_SYMBOLS
1418 RTS_POSIX_ONLY_SYMBOLS
1419 RTS_MINGW_ONLY_SYMBOLS
1420 RTS_CYGWIN_ONLY_SYMBOLS
1421 RTS_DARWIN_ONLY_SYMBOLS
1422 RTS_LIBGCC_SYMBOLS
1423 RTS_LIBFFI_SYMBOLS
1424 #if defined(darwin_HOST_OS) && defined(i386_HOST_ARCH)
1425 // dyld stub code contains references to this,
1426 // but it should never be called because we treat
1427 // lazy pointers as nonlazy.
1428 { "dyld_stub_binding_helper", (void*)0xDEADBEEF },
1429 #endif
1430 { 0, 0 } /* sentinel */
1431 };
1432
1433
1434 /* -----------------------------------------------------------------------------
1435 * Insert symbols into hash tables, checking for duplicates.
1436 */
1437
1438 static void ghciInsertStrHashTable ( pathchar* obj_name,
1439 HashTable *table,
1440 char* key,
1441 void *data
1442 )
1443 {
1444 if (lookupHashTable(table, (StgWord)key) == NULL)
1445 {
1446 insertStrHashTable(table, (StgWord)key, data);
1447 return;
1448 }
1449 debugBelch(
1450 "\n\n"
1451 "GHCi runtime linker: fatal error: I found a duplicate definition for symbol\n"
1452 " %s\n"
1453 "whilst processing object file\n"
1454 " %" PATH_FMT "\n"
1455 "This could be caused by:\n"
1456 " * Loading two different object files which export the same symbol\n"
1457 " * Specifying the same object file twice on the GHCi command line\n"
1458 " * An incorrect `package.conf' entry, causing some object to be\n"
1459 " loaded twice.\n"
1460 "GHCi cannot safely continue in this situation. Exiting now. Sorry.\n"
1461 "\n",
1462 (char*)key,
1463 obj_name
1464 );
1465 stg_exit(1);
1466 }
1467 /* -----------------------------------------------------------------------------
1468 * initialize the object linker
1469 */
1470
1471
1472 static int linker_init_done = 0 ;
1473
1474 #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1475 static void *dl_prog_handle;
1476 static regex_t re_invalid;
1477 static regex_t re_realso;
1478 #ifdef THREADED_RTS
1479 static Mutex dl_mutex; // mutex to protect dlopen/dlerror critical section
1480 #endif
1481 #endif
1482
1483 void
1484 initLinker( void )
1485 {
1486 RtsSymbolVal *sym;
1487 #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1488 int compileResult;
1489 #endif
1490
1491 IF_DEBUG(linker, debugBelch("initLinker: start\n"));
1492
1493 /* Make initLinker idempotent, so we can call it
1494 before every relevant operation; that means we
1495 don't need to initialise the linker separately */
1496 if (linker_init_done == 1) {
1497 IF_DEBUG(linker, debugBelch("initLinker: idempotent return\n"));
1498 return;
1499 } else {
1500 linker_init_done = 1;
1501 }
1502
1503 #if defined(THREADED_RTS) && (defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO))
1504 initMutex(&dl_mutex);
1505 #endif
1506 stablehash = allocStrHashTable();
1507 symhash = allocStrHashTable();
1508
1509 /* populate the symbol table with stuff from the RTS */
1510 for (sym = rtsSyms; sym->lbl != NULL; sym++) {
1511 ghciInsertStrHashTable(WSTR("(GHCi built-in symbols)"),
1512 symhash, sym->lbl, sym->addr);
1513 IF_DEBUG(linker, debugBelch("initLinker: inserting rts symbol %s, %p\n", sym->lbl, sym->addr));
1514 }
1515 # if defined(OBJFORMAT_MACHO) && defined(powerpc_HOST_ARCH)
1516 machoInitSymbolsWithoutUnderscore();
1517 # endif
1518
1519 # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1520 # if defined(RTLD_DEFAULT)
1521 dl_prog_handle = RTLD_DEFAULT;
1522 # else
1523 dl_prog_handle = dlopen(NULL, RTLD_LAZY);
1524 # endif /* RTLD_DEFAULT */
1525
1526 compileResult = regcomp(&re_invalid,
1527 "(([^ \t()])+\\.so([^ \t:()])*):([ \t])*(invalid ELF header|file too short)",
1528 REG_EXTENDED);
1529 if (compileResult != 0) {
1530 barf("Compiling re_invalid failed");
1531 }
1532 compileResult = regcomp(&re_realso,
1533 "(GROUP|INPUT) *\\( *([^ )]+)",
1534 REG_EXTENDED);
1535 if (compileResult != 0) {
1536 barf("Compiling re_realso failed");
1537 }
1538 # endif
1539
1540 #if !defined(ALWAYS_PIC) && defined(x86_64_HOST_ARCH)
1541 if (RtsFlags.MiscFlags.linkerMemBase != 0) {
1542 // User-override for mmap_32bit_base
1543 mmap_32bit_base = (void*)RtsFlags.MiscFlags.linkerMemBase;
1544 }
1545 #endif
1546
1547 #if defined(mingw32_HOST_OS)
1548 /*
1549 * These two libraries cause problems when added to the static link,
1550 * but are necessary for resolving symbols in GHCi, hence we load
1551 * them manually here.
1552 */
1553 addDLL(WSTR("msvcrt"));
1554 addDLL(WSTR("kernel32"));
1555 #endif
1556
1557 IF_DEBUG(linker, debugBelch("initLinker: done\n"));
1558 return;
1559 }
1560
1561 void
1562 exitLinker( void ) {
1563 #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1564 if (linker_init_done == 1) {
1565 regfree(&re_invalid);
1566 regfree(&re_realso);
1567 #ifdef THREADED_RTS
1568 closeMutex(&dl_mutex);
1569 #endif
1570 }
1571 #endif
1572 }
1573
1574 /* -----------------------------------------------------------------------------
1575 * Loading DLL or .so dynamic libraries
1576 * -----------------------------------------------------------------------------
1577 *
1578 * Add a DLL from which symbols may be found. In the ELF case, just
1579 * do RTLD_GLOBAL-style add, so no further messing around needs to
1580 * happen in order that symbols in the loaded .so are findable --
1581 * lookupSymbol() will subsequently see them by dlsym on the program's
1582 * dl-handle. Returns NULL if success, otherwise ptr to an err msg.
1583 *
1584 * In the PEi386 case, open the DLLs and put handles to them in a
1585 * linked list. When looking for a symbol, try all handles in the
1586 * list. This means that we need to load even DLLs that are guaranteed
1587 * to be in the ghc.exe image already, just so we can get a handle
1588 * to give to loadSymbol, so that we can find the symbols. For such
1589 * libraries, the LoadLibrary call should be a no-op except for returning
1590 * the handle.
1591 *
1592 */
1593
1594 #if defined(OBJFORMAT_PEi386)
1595 /* A record for storing handles into DLLs. */
1596
1597 typedef
1598 struct _OpenedDLL {
1599 pathchar* name;
1600 struct _OpenedDLL* next;
1601 HINSTANCE instance;
1602 }
1603 OpenedDLL;
1604
1605 /* A list thereof. */
1606 static OpenedDLL* opened_dlls = NULL;
1607 #endif
1608
1609 # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1610
1611 /* Suppose in ghci we load a temporary SO for a module containing
1612 f = 1
1613 and then modify the module, recompile, and load another temporary
1614 SO with
1615 f = 2
1616 Then as we don't unload the first SO, dlsym will find the
1617 f = 1
1618 symbol whereas we want the
1619 f = 2
1620 symbol. We therefore need to keep our own SO handle list, and
1621 try SOs in the right order. */
1622
1623 typedef
1624 struct _OpenedSO {
1625 struct _OpenedSO* next;
1626 void *handle;
1627 }
1628 OpenedSO;
1629
1630 /* A list thereof. */
1631 static OpenedSO* openedSOs = NULL;
1632
1633 static const char *
1634 internal_dlopen(const char *dll_name)
1635 {
1636 OpenedSO* o_so;
1637 void *hdl;
1638 const char *errmsg;
1639 char *errmsg_copy;
1640
1641 // omitted: RTLD_NOW
1642 // see http://www.haskell.org/pipermail/cvs-ghc/2007-September/038570.html
1643 IF_DEBUG(linker,
1644 debugBelch("internal_dlopen: dll_name = '%s'\n", dll_name));
1645
1646 //-------------- Begin critical section ------------------
1647 // This critical section is necessary because dlerror() is not
1648 // required to be reentrant (see POSIX -- IEEE Std 1003.1-2008)
1649 // Also, the error message returned must be copied to preserve it
1650 // (see POSIX also)
1651
1652 ACQUIRE_LOCK(&dl_mutex);
1653 hdl = dlopen(dll_name, RTLD_LAZY | RTLD_GLOBAL);
1654
1655 errmsg = NULL;
1656 if (hdl == NULL) {
1657 /* dlopen failed; return a ptr to the error msg. */
1658 errmsg = dlerror();
1659 if (errmsg == NULL) errmsg = "addDLL: unknown error";
1660 errmsg_copy = stgMallocBytes(strlen(errmsg)+1, "addDLL");
1661 strcpy(errmsg_copy, errmsg);
1662 errmsg = errmsg_copy;
1663 }
1664 o_so = stgMallocBytes(sizeof(OpenedSO), "addDLL");
1665 o_so->handle = hdl;
1666 o_so->next = openedSOs;
1667 openedSOs = o_so;
1668
1669 RELEASE_LOCK(&dl_mutex);
1670 //--------------- End critical section -------------------
1671
1672 return errmsg;
1673 }
1674
1675 static void *
1676 internal_dlsym(void *hdl, const char *symbol) {
1677 OpenedSO* o_so;
1678 void *v;
1679
1680 // We acquire dl_mutex as concurrent dl* calls may alter dlerror
1681 ACQUIRE_LOCK(&dl_mutex);
1682 dlerror();
1683 for (o_so = openedSOs; o_so != NULL; o_so = o_so->next) {
1684 v = dlsym(o_so->handle, symbol);
1685 if (dlerror() == NULL) {
1686 RELEASE_LOCK(&dl_mutex);
1687 return v;
1688 }
1689 }
1690 v = dlsym(hdl, symbol)
1691 RELEASE_LOCK(&dl_mutex);
1692 return v;
1693 }
1694 # endif
1695
1696 const char *
1697 addDLL( pathchar *dll_name )
1698 {
1699 # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1700 /* ------------------- ELF DLL loader ------------------- */
1701
1702 #define NMATCH 5
1703 regmatch_t match[NMATCH];
1704 const char *errmsg;
1705 FILE* fp;
1706 size_t match_length;
1707 #define MAXLINE 1000
1708 char line[MAXLINE];
1709 int result;
1710
1711 initLinker();
1712
1713 IF_DEBUG(linker, debugBelch("addDLL: dll_name = '%s'\n", dll_name));
1714 errmsg = internal_dlopen(dll_name);
1715
1716 if (errmsg == NULL) {
1717 return NULL;
1718 }
1719
1720 // GHC Trac ticket #2615
1721 // On some systems (e.g., Gentoo Linux) dynamic files (e.g. libc.so)
1722 // contain linker scripts rather than ELF-format object code. This
1723 // code handles the situation by recognizing the real object code
1724 // file name given in the linker script.
1725 //
1726 // If an "invalid ELF header" error occurs, it is assumed that the
1727 // .so file contains a linker script instead of ELF object code.
1728 // In this case, the code looks for the GROUP ( ... ) linker
1729 // directive. If one is found, the first file name inside the
1730 // parentheses is treated as the name of a dynamic library and the
1731 // code attempts to dlopen that file. If this is also unsuccessful,
1732 // an error message is returned.
1733
1734 // see if the error message is due to an invalid ELF header
1735 IF_DEBUG(linker, debugBelch("errmsg = '%s'\n", errmsg));
1736 result = regexec(&re_invalid, errmsg, (size_t) NMATCH, match, 0);
1737 IF_DEBUG(linker, debugBelch("result = %i\n", result));
1738 if (result == 0) {
1739 // success -- try to read the named file as a linker script
1740 match_length = (size_t) stg_min((match[1].rm_eo - match[1].rm_so),
1741 MAXLINE-1);
1742 strncpy(line, (errmsg+(match[1].rm_so)),match_length);
1743 line[match_length] = '\0'; // make sure string is null-terminated
1744 IF_DEBUG(linker, debugBelch ("file name = '%s'\n", line));
1745 if ((fp = fopen(line, "r")) == NULL) {
1746 return errmsg; // return original error if open fails
1747 }
1748 // try to find a GROUP or INPUT ( ... ) command
1749 while (fgets(line, MAXLINE, fp) != NULL) {
1750 IF_DEBUG(linker, debugBelch("input line = %s", line));
1751 if (regexec(&re_realso, line, (size_t) NMATCH, match, 0) == 0) {
1752 // success -- try to dlopen the first named file
1753 IF_DEBUG(linker, debugBelch("match%s\n",""));
1754 line[match[2].rm_eo] = '\0';
1755 errmsg = internal_dlopen(line+match[2].rm_so);
1756 break;
1757 }
1758 // if control reaches here, no GROUP or INPUT ( ... ) directive
1759 // was found and the original error message is returned to the
1760 // caller
1761 }
1762 fclose(fp);
1763 }
1764 return errmsg;
1765
1766 # elif defined(OBJFORMAT_PEi386)
1767 /* ------------------- Win32 DLL loader ------------------- */
1768
1769 pathchar* buf;
1770 OpenedDLL* o_dll;
1771 HINSTANCE instance;
1772
1773 initLinker();
1774
1775 /* debugBelch("\naddDLL; dll_name = `%s'\n", dll_name); */
1776
1777 /* See if we've already got it, and ignore if so. */
1778 for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
1779 if (0 == pathcmp(o_dll->name, dll_name))
1780 return NULL;
1781 }
1782
1783 /* The file name has no suffix (yet) so that we can try
1784 both foo.dll and foo.drv
1785
1786 The documentation for LoadLibrary says:
1787 If no file name extension is specified in the lpFileName
1788 parameter, the default library extension .dll is
1789 appended. However, the file name string can include a trailing
1790 point character (.) to indicate that the module name has no
1791 extension. */
1792
1793 buf = stgMallocBytes((pathlen(dll_name) + 10) * sizeof(wchar_t), "addDLL");
1794 swprintf(buf, L"%s.DLL", dll_name);
1795 instance = LoadLibraryW(buf);
1796 if (instance == NULL) {
1797 if (GetLastError() != ERROR_MOD_NOT_FOUND) goto error;
1798 // KAA: allow loading of drivers (like winspool.drv)
1799 swprintf(buf, L"%s.DRV", dll_name);
1800 instance = LoadLibraryW(buf);
1801 if (instance == NULL) {
1802 if (GetLastError() != ERROR_MOD_NOT_FOUND) goto error;
1803 // #1883: allow loading of unix-style libfoo.dll DLLs
1804 swprintf(buf, L"lib%s.DLL", dll_name);
1805 instance = LoadLibraryW(buf);
1806 if (instance == NULL) {
1807 goto error;
1808 }
1809 }
1810 }
1811 stgFree(buf);
1812
1813 /* Add this DLL to the list of DLLs in which to search for symbols. */
1814 o_dll = stgMallocBytes( sizeof(OpenedDLL), "addDLL" );
1815 o_dll->name = pathdup(dll_name);
1816 o_dll->instance = instance;
1817 o_dll->next = opened_dlls;
1818 opened_dlls = o_dll;
1819
1820 return NULL;
1821
1822 error:
1823 stgFree(buf);
1824 sysErrorBelch("%" PATH_FMT, dll_name);
1825
1826 /* LoadLibrary failed; return a ptr to the error msg. */
1827 return "addDLL: could not load DLL";
1828
1829 # else
1830 barf("addDLL: not implemented on this platform");
1831 # endif
1832 }
1833
1834 /* -----------------------------------------------------------------------------
1835 * insert a stable symbol in the hash table
1836 */
1837
1838 void
1839 insertStableSymbol(pathchar* obj_name, char* key, StgPtr p)
1840 {
1841 ghciInsertStrHashTable(obj_name, stablehash, key, getStablePtr(p));
1842 }
1843
1844
1845 /* -----------------------------------------------------------------------------
1846 * insert a symbol in the hash table
1847 */
1848 void
1849 insertSymbol(pathchar* obj_name, char* key, void* data)
1850 {
1851 ghciInsertStrHashTable(obj_name, symhash, key, data);
1852 }
1853
1854 /* -----------------------------------------------------------------------------
1855 * lookup a symbol in the hash table
1856 */
1857 void *
1858 lookupSymbol( char *lbl )
1859 {
1860 void *val;
1861 IF_DEBUG(linker, debugBelch("lookupSymbol: looking up %s\n", lbl));
1862 initLinker() ;
1863 ASSERT(symhash != NULL);
1864 val = lookupStrHashTable(symhash, lbl);
1865
1866 if (val == NULL) {
1867 IF_DEBUG(linker, debugBelch("lookupSymbol: symbol not found\n"));
1868 # if defined(OBJFORMAT_ELF)
1869 return internal_dlsym(dl_prog_handle, lbl);
1870 # elif defined(OBJFORMAT_MACHO)
1871 # if HAVE_DLFCN_H
1872 /* On OS X 10.3 and later, we use dlsym instead of the old legacy
1873 interface.
1874
1875 HACK: On OS X, all symbols are prefixed with an underscore.
1876 However, dlsym wants us to omit the leading underscore from the
1877 symbol name -- the dlsym routine puts it back on before searching
1878 for the symbol. For now, we simply strip it off here (and ONLY
1879 here).
1880 */
1881 IF_DEBUG(linker, debugBelch("lookupSymbol: looking up %s with dlsym\n", lbl));
1882 ASSERT(lbl[0] == '_');
1883 return internal_dlsym(dl_prog_handle, lbl + 1);
1884 # else
1885 if (NSIsSymbolNameDefined(lbl)) {
1886 NSSymbol symbol = NSLookupAndBindSymbol(lbl);
1887 return NSAddressOfSymbol(symbol);
1888 } else {
1889 return NULL;
1890 }
1891 # endif /* HAVE_DLFCN_H */
1892 # elif defined(OBJFORMAT_PEi386)
1893 void* sym;
1894
1895 sym = lookupSymbolInDLLs((unsigned char*)lbl);
1896 if (sym != NULL) { return sym; };
1897
1898 // Also try looking up the symbol without the @N suffix. Some
1899 // DLLs have the suffixes on their symbols, some don't.
1900 zapTrailingAtSign ( (unsigned char*)lbl );
1901 sym = lookupSymbolInDLLs((unsigned char*)lbl);
1902 if (sym != NULL) { return sym; };
1903 return NULL;
1904
1905 # else
1906 ASSERT(2+2 == 5);
1907 return NULL;
1908 # endif
1909 } else {
1910 IF_DEBUG(linker, debugBelch("lookupSymbol: value of %s is %p\n", lbl, val));
1911 return val;
1912 }
1913 }
1914
1915 /* -----------------------------------------------------------------------------
1916 * Debugging aid: look in GHCi's object symbol tables for symbols
1917 * within DELTA bytes of the specified address, and show their names.
1918 */
1919 #ifdef DEBUG
1920 void ghci_enquire ( char* addr );
1921
1922 void ghci_enquire ( char* addr )
1923 {
1924 int i;
1925 char* sym;
1926 char* a;
1927 const int DELTA = 64;
1928 ObjectCode* oc;
1929
1930 initLinker();
1931
1932 for (oc = objects; oc; oc = oc->next) {
1933 for (i = 0; i < oc->n_symbols; i++) {
1934 sym = oc->symbols[i];
1935 if (sym == NULL) continue;
1936 a = NULL;
1937 if (a == NULL) {
1938 a = lookupStrHashTable(symhash, sym);
1939 }
1940 if (a == NULL) {
1941 // debugBelch("ghci_enquire: can't find %s\n", sym);
1942 }
1943 else if (addr-DELTA <= a && a <= addr+DELTA) {
1944 debugBelch("%p + %3d == `%s'\n", addr, (int)(a - addr), sym);
1945 }
1946 }
1947 }
1948 }
1949 #endif
1950
1951 #ifdef USE_MMAP
1952 #define ROUND_UP(x,size) ((x + size - 1) & ~(size - 1))
1953
1954 static void *
1955 mmapForLinker (size_t bytes, nat flags, int fd)
1956 {
1957 void *map_addr = NULL;
1958 void *result;
1959 int pagesize, size;
1960 static nat fixed = 0;
1961
1962 IF_DEBUG(linker, debugBelch("mmapForLinker: start\n"));
1963 pagesize = getpagesize();
1964 size = ROUND_UP(bytes, pagesize);
1965
1966 #if !defined(ALWAYS_PIC) && defined(x86_64_HOST_ARCH)
1967 mmap_again:
1968
1969 if (mmap_32bit_base != 0) {
1970 map_addr = mmap_32bit_base;
1971 }
1972 #endif
1973
1974 IF_DEBUG(linker, debugBelch("mmapForLinker: \tprotection %#0x\n", PROT_EXEC | PROT_READ | PROT_WRITE));
1975 IF_DEBUG(linker, debugBelch("mmapForLinker: \tflags %#0x\n", MAP_PRIVATE | TRY_MAP_32BIT | fixed | flags));
1976 result = mmap(map_addr, size, PROT_EXEC|PROT_READ|PROT_WRITE,
1977 MAP_PRIVATE|TRY_MAP_32BIT|fixed|flags, fd, 0);
1978
1979 if (result == MAP_FAILED) {
1980 sysErrorBelch("mmap %" FMT_Word " bytes at %p",(W_)size,map_addr);
1981 errorBelch("Try specifying an address with +RTS -xm<addr> -RTS");
1982 stg_exit(EXIT_FAILURE);
1983 }
1984
1985 #if !defined(ALWAYS_PIC) && defined(x86_64_HOST_ARCH)
1986 if (mmap_32bit_base != 0) {
1987 if (result == map_addr) {
1988 mmap_32bit_base = (StgWord8*)map_addr + size;
1989 } else {
1990 if ((W_)result > 0x80000000) {
1991 // oops, we were given memory over 2Gb
1992 #if defined(freebsd_HOST_OS) || defined(kfreebsdgnu_HOST_OS) || defined(dragonfly_HOST_OS)
1993 // Some platforms require MAP_FIXED. This is normally
1994 // a bad idea, because MAP_FIXED will overwrite
1995 // existing mappings.
1996 munmap(result,size);
1997 fixed = MAP_FIXED;
1998 goto mmap_again;
1999 #else
2000 barf("loadObj: failed to mmap() memory below 2Gb; asked for %lu bytes at %p. Try specifying an address with +RTS -xm<addr> -RTS", size, map_addr, result);
2001 #endif
2002 } else {
2003 // hmm, we were given memory somewhere else, but it's
2004 // still under 2Gb so we can use it. Next time, ask
2005 // for memory right after the place we just got some
2006 mmap_32bit_base = (StgWord8*)result + size;
2007 }
2008 }
2009 } else {
2010 if ((W_)result > 0x80000000) {
2011 // oops, we were given memory over 2Gb
2012 // ... try allocating memory somewhere else?;
2013 debugTrace(DEBUG_linker,"MAP_32BIT didn't work; gave us %lu bytes at 0x%p", bytes, result);
2014 munmap(result, size);
2015
2016 // Set a base address and try again... (guess: 1Gb)
2017 mmap_32bit_base = (void*)0x40000000;
2018 goto mmap_again;
2019 }
2020 }
2021 #endif
2022
2023 IF_DEBUG(linker, debugBelch("mmapForLinker: mapped %" FMT_Word " bytes starting at %p\n", (W_)size, result));
2024 IF_DEBUG(linker, debugBelch("mmapForLinker: done\n"));
2025 return result;
2026 }
2027 #endif // USE_MMAP
2028
2029 static ObjectCode*
2030 mkOc( pathchar *path, char *image, int imageSize,
2031 char *archiveMemberName
2032 #ifndef USE_MMAP
2033 #ifdef darwin_HOST_OS
2034 , int misalignment
2035 #endif
2036 #endif
2037 ) {
2038 ObjectCode* oc;
2039
2040 IF_DEBUG(linker, debugBelch("mkOc: start\n"));
2041 oc = stgMallocBytes(sizeof(ObjectCode), "loadArchive(oc)");
2042
2043 # if defined(OBJFORMAT_ELF)
2044 oc->formatName = "ELF";
2045 # elif defined(OBJFORMAT_PEi386)
2046 oc->formatName = "PEi386";
2047 # elif defined(OBJFORMAT_MACHO)
2048 oc->formatName = "Mach-O";
2049 # else
2050 stgFree(oc);
2051 barf("loadObj: not implemented on this platform");
2052 # endif
2053
2054 oc->image = image;
2055 oc->fileName = pathdup(path);
2056
2057 if (archiveMemberName) {
2058 oc->archiveMemberName = stgMallocBytes( strlen(archiveMemberName)+1, "loadObj" );
2059 strcpy(oc->archiveMemberName, archiveMemberName);
2060 }
2061 else {
2062 oc->archiveMemberName = NULL;
2063 }
2064
2065 oc->fileSize = imageSize;
2066 oc->symbols = NULL;
2067 oc->sections = NULL;
2068 oc->proddables = NULL;
2069
2070 #ifndef USE_MMAP
2071 #ifdef darwin_HOST_OS
2072 oc->misalignment = misalignment;
2073 #endif
2074 #endif
2075
2076 /* chain it onto the list of objects */
2077 oc->next = objects;
2078 objects = oc;
2079
2080 IF_DEBUG(linker, debugBelch("mkOc: done\n"));
2081 return oc;
2082 }
2083
2084 HsInt
2085 loadArchive( pathchar *path )
2086 {
2087 ObjectCode* oc;
2088 char *image;
2089 int memberSize;
2090 FILE *f;
2091 int n;
2092 size_t thisFileNameSize;
2093 char *fileName;
2094 size_t fileNameSize;
2095 int isObject, isGnuIndex;
2096 char tmp[20];
2097 char *gnuFileIndex;
2098 int gnuFileIndexSize;
2099 #if defined(darwin_HOST_OS)
2100 int i;
2101 uint32_t nfat_arch, nfat_offset, cputype, cpusubtype;
2102 #if defined(i386_HOST_ARCH)
2103 const uint32_t mycputype = CPU_TYPE_X86;
2104 const uint32_t mycpusubtype = CPU_SUBTYPE_X86_ALL;
2105 #elif defined(x86_64_HOST_ARCH)
2106 const uint32_t mycputype = CPU_TYPE_X86_64;
2107 const uint32_t mycpusubtype = CPU_SUBTYPE_X86_64_ALL;
2108 #elif defined(powerpc_HOST_ARCH)
2109 const uint32_t mycputype = CPU_TYPE_POWERPC;
2110 const uint32_t mycpusubtype = CPU_SUBTYPE_POWERPC_ALL;
2111 #elif defined(powerpc64_HOST_ARCH)
2112 const uint32_t mycputype = CPU_TYPE_POWERPC64;
2113 const uint32_t mycpusubtype = CPU_SUBTYPE_POWERPC_ALL;
2114 #else
2115 #error Unknown Darwin architecture
2116 #endif
2117 #if !defined(USE_MMAP)
2118 int misalignment;
2119 #endif
2120 #endif
2121
2122 IF_DEBUG(linker, debugBelch("loadArchive: start\n"));
2123 IF_DEBUG(linker, debugBelch("loadArchive: Loading archive `%" PATH_FMT" '\n", path));
2124
2125 if (dynamicGhcPrograms) {
2126 barf("loadArchive called, but using dynamic GHC (%s)", path);
2127 }
2128
2129 gnuFileIndex = NULL;
2130 gnuFileIndexSize = 0;
2131
2132 fileNameSize = 32;
2133 fileName = stgMallocBytes(fileNameSize, "loadArchive(fileName)");
2134
2135 f = pathopen(path, WSTR("rb"));
2136 if (!f)
2137 barf("loadObj: can't read `%s'", path);
2138
2139 /* Check if this is an archive by looking for the magic "!<arch>\n"
2140 * string. Usually, if this fails, we barf and quit. On Darwin however,
2141 * we may have a fat archive, which contains archives for more than
2142 * one architecture. Fat archives start with the magic number 0xcafebabe,
2143 * always stored big endian. If we find a fat_header, we scan through
2144 * the fat_arch structs, searching through for one for our host
2145 * architecture. If a matching struct is found, we read the offset
2146 * of our archive data (nfat_offset) and seek forward nfat_offset bytes
2147 * from the start of the file.
2148 *
2149 * A subtlety is that all of the members of the fat_header and fat_arch
2150 * structs are stored big endian, so we need to call byte order
2151 * conversion functions.
2152 *
2153 * If we find the appropriate architecture in a fat archive, we gobble
2154 * its magic "!<arch>\n" string and continue processing just as if
2155 * we had a single architecture archive.
2156 */
2157
2158 n = fread ( tmp, 1, 8, f );
2159 if (n != 8)
2160 barf("loadArchive: Failed reading header from `%s'", path);
2161 if (strncmp(tmp, "!<arch>\n", 8) != 0) {
2162
2163 #if defined(darwin_HOST_OS)
2164 /* Not a standard archive, look for a fat archive magic number: */
2165 if (ntohl(*(uint32_t *)tmp) == FAT_MAGIC) {
2166 nfat_arch = ntohl(*(uint32_t *)(tmp + 4));
2167 IF_DEBUG(linker, debugBelch("loadArchive: found a fat archive containing %d architectures\n", nfat_arch));
2168 nfat_offset = 0;
2169
2170 for (i = 0; i < (int)nfat_arch; i++) {
2171 /* search for the right arch */
2172 n = fread( tmp, 1, 20, f );
2173 if (n != 8)
2174 barf("loadArchive: Failed reading arch from `%s'", path);
2175 cputype = ntohl(*(uint32_t *)tmp);
2176 cpusubtype = ntohl(*(uint32_t *)(tmp + 4));
2177
2178 if (cputype == mycputype && cpusubtype == mycpusubtype) {
2179 IF_DEBUG(linker, debugBelch("loadArchive: found my archive in a fat archive\n"));
2180 nfat_offset = ntohl(*(uint32_t *)(tmp + 8));
2181 break;
2182 }
2183 }
2184
2185 if (nfat_offset == 0) {
2186 barf ("loadArchive: searched %d architectures, but no host arch found", (int)nfat_arch);
2187 }
2188 else {
2189 n = fseek( f, nfat_offset, SEEK_SET );
2190 if (n != 0)
2191 barf("loadArchive: Failed to seek to arch in `%s'", path);
2192 n = fread ( tmp, 1, 8, f );
2193 if (n != 8)
2194 barf("loadArchive: Failed reading header from `%s'", path);
2195 if (strncmp(tmp, "!<arch>\n", 8) != 0) {
2196 barf("loadArchive: couldn't find archive in `%s' at offset %d", path, nfat_offset);
2197 }
2198 }
2199 }
2200 else {
2201 barf("loadArchive: Neither an archive, nor a fat archive: `%s'", path);
2202 }
2203
2204 #else
2205 barf("loadArchive: Not an archive: `%s'", path);
2206 #endif
2207 }
2208
2209 IF_DEBUG(linker, debugBelch("loadArchive: loading archive contents\n"));
2210
2211 while(1) {
2212 n = fread ( fileName, 1, 16, f );
2213 if (n != 16) {
2214 if (feof(f)) {
2215 IF_DEBUG(linker, debugBelch("loadArchive: EOF while reading from '%" PATH_FMT "'\n", path));
2216 break;
2217 }
2218 else {
2219 barf("loadArchive: Failed reading file name from `%s'", path);
2220 }
2221 }
2222
2223 #if defined(darwin_HOST_OS)
2224 if (strncmp(fileName, "!<arch>\n", 8) == 0) {
2225 IF_DEBUG(linker, debugBelch("loadArchive: found the start of another archive, breaking\n"));
2226 break;
2227 }
2228 #endif
2229
2230 n = fread ( tmp, 1, 12, f );
2231 if (n != 12)
2232 barf("loadArchive: Failed reading mod time from `%s'", path);
2233 n = fread ( tmp, 1, 6, f );
2234 if (n != 6)
2235 barf("loadArchive: Failed reading owner from `%s'", path);
2236 n = fread ( tmp, 1, 6, f );
2237 if (n != 6)
2238 barf("loadArchive: Failed reading group from `%s'", path);
2239 n = fread ( tmp, 1, 8, f );
2240 if (n != 8)
2241 barf("loadArchive: Failed reading mode from `%s'", path);
2242 n = fread ( tmp, 1, 10, f );
2243 if (n != 10)
2244 barf("loadArchive: Failed reading size from `%s'", path);
2245 tmp[10] = '\0';
2246 for (n = 0; isdigit(tmp[n]); n++);
2247 tmp[n] = '\0';
2248 memberSize = atoi(tmp);
2249
2250 IF_DEBUG(linker, debugBelch("loadArchive: size of this archive member is %d\n", memberSize));
2251 n = fread ( tmp, 1, 2, f );
2252 if (n != 2)
2253 barf("loadArchive: Failed reading magic from `%s'", path);
2254 if (strncmp(tmp, "\x60\x0A", 2) != 0)
2255 barf("loadArchive: Failed reading magic from `%s' at %ld. Got %c%c",
2256 path, ftell(f), tmp[0], tmp[1]);
2257
2258 isGnuIndex = 0;
2259 /* Check for BSD-variant large filenames */
2260 if (0 == strncmp(fileName, "#1/", 3)) {
2261 fileName[16] = '\0';
2262 if (isdigit(fileName[3])) {
2263 for (n = 4; isdigit(fileName[n]); n++);
2264 fileName[n] = '\0';
2265 thisFileNameSize = atoi(fileName + 3);
2266 memberSize -= thisFileNameSize;
2267 if (thisFileNameSize >= fileNameSize) {
2268 /* Double it to avoid potentially continually
2269 increasing it by 1 */
2270 fileNameSize = thisFileNameSize * 2;
2271 fileName = stgReallocBytes(fileName, fileNameSize, "loadArchive(fileName)");
2272 }
2273 n = fread ( fileName, 1, thisFileNameSize, f );
2274 if (n != (int)thisFileNameSize) {
2275 barf("loadArchive: Failed reading filename from `%s'",
2276 path);
2277 }
2278 fileName[thisFileNameSize] = 0;
2279
2280 /* On OS X at least, thisFileNameSize is the size of the
2281 fileName field, not the length of the fileName
2282 itself. */
2283 thisFileNameSize = strlen(fileName);
2284 }
2285 else {
2286 barf("loadArchive: BSD-variant filename size not found while reading filename from `%s'", path);
2287 }
2288 }
2289 /* Check for GNU file index file */
2290 else if (0 == strncmp(fileName, "//", 2)) {
2291 fileName[0] = '\0';
2292 thisFileNameSize = 0;
2293 isGnuIndex = 1;
2294 }
2295 /* Check for a file in the GNU file index */
2296 else if (fileName[0] == '/') {
2297 if (isdigit(fileName[1])) {
2298 int i;
2299
2300 for (n = 2; isdigit(fileName[n]); n++);
2301 fileName[n] = '\0';
2302 n = atoi(fileName + 1);
2303
2304 if (gnuFileIndex == NULL) {
2305 barf("loadArchive: GNU-variant filename without an index while reading from `%s'", path);
2306 }
2307 if (n < 0 || n > gnuFileIndexSize) {
2308 barf("loadArchive: GNU-variant filename offset %d out of range [0..%d] while reading filename from `%s'", n, gnuFileIndexSize, path);
2309 }
2310 if (n != 0 && gnuFileIndex[n - 1] != '\n') {
2311 barf("loadArchive: GNU-variant filename offset %d invalid (range [0..%d]) while reading filename from `%s'", n, gnuFileIndexSize, path);
2312 }
2313 for (i = n; gnuFileIndex[i] != '/'; i++);
2314 thisFileNameSize = i - n;
2315 if (thisFileNameSize >= fileNameSize) {
2316 /* Double it to avoid potentially continually
2317 increasing it by 1 */
2318 fileNameSize = thisFileNameSize * 2;
2319 fileName = stgReallocBytes(fileName, fileNameSize, "loadArchive(fileName)");
2320 }
2321 memcpy(fileName, gnuFileIndex + n, thisFileNameSize);
2322 fileName[thisFileNameSize] = '\0';
2323 }
2324 else if (fileName[1] == ' ') {
2325 fileName[0] = '\0';
2326 thisFileNameSize = 0;
2327 }
2328 else {
2329 barf("loadArchive: GNU-variant filename offset not found while reading filename from `%s'", path);
2330 }
2331 }
2332 /* Finally, the case where the filename field actually contains
2333 the filename */
2334 else {
2335 /* GNU ar terminates filenames with a '/', this allowing
2336 spaces in filenames. So first look to see if there is a
2337 terminating '/'. */
2338 for (thisFileNameSize = 0;
2339 thisFileNameSize < 16;
2340 thisFileNameSize++) {
2341 if (fileName[thisFileNameSize] == '/') {
2342 fileName[thisFileNameSize] = '\0';
2343 break;
2344 }
2345 }
2346 /* If we didn't find a '/', then a space teminates the
2347 filename. Note that if we don't find one, then
2348 thisFileNameSize ends up as 16, and we already have the
2349 '\0' at the end. */
2350 if (thisFileNameSize == 16) {
2351 for (thisFileNameSize = 0;
2352 thisFileNameSize < 16;
2353 thisFileNameSize++) {
2354 if (fileName[thisFileNameSize] == ' ') {
2355 fileName[thisFileNameSize] = '\0';
2356 break;
2357 }
2358 }
2359 }
2360 }
2361
2362 IF_DEBUG(linker,
2363 debugBelch("loadArchive: Found member file `%s'\n", fileName));
2364
2365 isObject = thisFileNameSize >= 2
2366 && fileName[thisFileNameSize - 2] == '.'
2367 && fileName[thisFileNameSize - 1] == 'o';
2368
2369 IF_DEBUG(linker, debugBelch("loadArchive: \tthisFileNameSize = %d\n", (int)thisFileNameSize));
2370 IF_DEBUG(linker, debugBelch("loadArchive: \tisObject = %d\n", isObject));
2371
2372 if (isObject) {
2373 char *archiveMemberName;
2374
2375 IF_DEBUG(linker, debugBelch("loadArchive: Member is an object file...loading...\n"));
2376
2377 /* We can't mmap from the archive directly, as object
2378 files need to be 8-byte aligned but files in .ar
2379 archives are 2-byte aligned. When possible we use mmap
2380 to get some anonymous memory, as on 64-bit platforms if
2381 we use malloc then we can be given memory above 2^32.
2382 In the mmap case we're probably wasting lots of space;
2383 we could do better. */
2384 #if defined(USE_MMAP)
2385 image = mmapForLinker(memberSize, MAP_ANONYMOUS, -1);
2386 #elif defined(mingw32_HOST_OS)
2387 // TODO: We would like to use allocateExec here, but allocateExec
2388 // cannot currently allocate blocks large enough.
2389 {
2390 int offset;
2391 #if defined(x86_64_HOST_ARCH)
2392 /* We get back 8-byte aligned memory (is that guaranteed?), but
2393 the offsets to the sections within the file are all 4 mod 8
2394 (is that guaranteed?). We therefore need to offset the image
2395 by 4, so that all the pointers are 8-byte aligned, so that
2396 pointer tagging works. */
2397 offset = 4;
2398 #else
2399 offset = 0;
2400 #endif
2401 image = VirtualAlloc(NULL, memberSize + offset,
2402 MEM_RESERVE | MEM_COMMIT,
2403 PAGE_EXECUTE_READWRITE);
2404 image += offset;
2405 }
2406 #elif defined(darwin_HOST_OS)
2407 /* See loadObj() */
2408 misalignment = machoGetMisalignment(f);
2409 image = stgMallocBytes(memberSize + misalignment, "loadArchive(image)");
2410 image += misalignment;
2411 #else
2412 image = stgMallocBytes(memberSize, "loadArchive(image)");
2413 #endif
2414 n = fread ( image, 1, memberSize, f );
2415 if (n != memberSize) {
2416 barf("loadArchive: error whilst reading `%s'", path);
2417 }
2418
2419 archiveMemberName = stgMallocBytes(pathlen(path) + thisFileNameSize + 3,
2420 "loadArchive(file)");
2421 sprintf(archiveMemberName, "%" PATH_FMT "(%.*s)",
2422 path, (int)thisFileNameSize, fileName);
2423
2424 oc = mkOc(path, image, memberSize, archiveMemberName
2425 #ifndef USE_MMAP
2426 #ifdef darwin_HOST_OS
2427 , misalignment
2428 #endif
2429 #endif
2430 );
2431
2432 stgFree(archiveMemberName);
2433
2434 if (0 == loadOc(oc)) {
2435 stgFree(fileName);
2436 return 0;
2437 }
2438 }
2439 else if (isGnuIndex) {
2440 if (gnuFileIndex != NULL) {
2441 barf("loadArchive: GNU-variant index found, but already have an index, while reading filename from `%s'", path);
2442 }
2443 IF_DEBUG(linker, debugBelch("loadArchive: Found GNU-variant file index\n"));
2444 #ifdef USE_MMAP
2445 gnuFileIndex = mmapForLinker(memberSize + 1, MAP_ANONYMOUS, -1);
2446 #else
2447 gnuFileIndex = stgMallocBytes(memberSize + 1, "loadArchive(image)");
2448 #endif
2449 n = fread ( gnuFileIndex, 1, memberSize, f );
2450 if (n != memberSize) {
2451 barf("loadArchive: error whilst reading `%s'", path);
2452 }
2453 gnuFileIndex[memberSize] = '/';
2454 gnuFileIndexSize = memberSize;
2455 }
2456 else {
2457 IF_DEBUG(linker, debugBelch("loadArchive: '%s' does not appear to be an object file\n", fileName));
2458 n = fseek(f, memberSize, SEEK_CUR);
2459 if (n != 0)
2460 barf("loadArchive: error whilst seeking by %d in `%s'",
2461 memberSize, path);
2462 }
2463
2464 /* .ar files are 2-byte aligned */
2465 if (memberSize % 2) {
2466 IF_DEBUG(linker, debugBelch("loadArchive: trying to read one pad byte\n"));
2467 n = fread ( tmp, 1, 1, f );
2468 if (n != 1) {
2469 if (feof(f)) {
2470 IF_DEBUG(linker, debugBelch("loadArchive: found EOF while reading one pad byte\n"));
2471 break;
2472 }
2473 else {
2474 barf("loadArchive: Failed reading padding from `%s'", path);
2475 }
2476 }
2477 IF_DEBUG(linker, debugBelch("loadArchive: successfully read one pad byte\n"));
2478 }
2479 IF_DEBUG(linker, debugBelch("loadArchive: reached end of archive loading while loop\n"));
2480 }
2481
2482 fclose(f);
2483
2484 stgFree(fileName);
2485 if (gnuFileIndex != NULL) {
2486 #ifdef USE_MMAP
2487 munmap(gnuFileIndex, gnuFileIndexSize + 1);
2488 #else
2489 stgFree(gnuFileIndex);
2490 #endif
2491 }
2492
2493 IF_DEBUG(linker, debugBelch("loadArchive: done\n"));
2494 return 1;
2495 }
2496
2497 /* -----------------------------------------------------------------------------
2498 * Load an obj (populate the global symbol table, but don't resolve yet)
2499 *
2500 * Returns: 1 if ok, 0 on error.
2501 */
2502 HsInt
2503 loadObj( pathchar *path )
2504 {
2505 ObjectCode* oc;
2506 char *image;
2507 int fileSize;
2508 struct_stat st;
2509 int r;
2510 #ifdef USE_MMAP
2511 int fd;
2512 #else
2513 FILE *f;
2514 # if defined(darwin_HOST_OS)
2515 int misalignment;
2516 # endif
2517 #endif
2518 IF_DEBUG(linker, debugBelch("loadObj %" PATH_FMT "\n", path));
2519
2520 if (dynamicGhcPrograms) {
2521 barf("loadObj called, but using dynamic GHC (%s)", path);
2522 }
2523
2524 initLinker();
2525
2526 /* debugBelch("loadObj %s\n", path ); */
2527
2528 /* Check that we haven't already loaded this object.
2529 Ignore requests to load multiple times */
2530 {
2531 ObjectCode *o;
2532 int is_dup = 0;
2533 for (o = objects; o; o = o->next) {
2534 if (0 == pathcmp(o->fileName, path)) {
2535 is_dup = 1;
2536 break; /* don't need to search further */
2537 }
2538 }
2539 if (is_dup) {
2540 IF_DEBUG(linker, debugBelch(
2541 "GHCi runtime linker: warning: looks like you're trying to load the\n"
2542 "same object file twice:\n"
2543 " %" PATH_FMT "\n"
2544 "GHCi will ignore this, but be warned.\n"
2545 , path));
2546 return 1; /* success */
2547 }
2548 }
2549
2550 r = pathstat(path, &st);
2551 if (r == -1) {
2552 IF_DEBUG(linker, debugBelch("File doesn't exist\n"));
2553 return 0;
2554 }
2555
2556 fileSize = st.st_size;
2557
2558 #ifdef USE_MMAP
2559 /* On many architectures malloc'd memory isn't executable, so we need to use mmap. */
2560
2561 #if defined(openbsd_HOST_OS)
2562 fd = open(path, O_RDONLY, S_IRUSR);
2563 #else
2564 fd = open(path, O_RDONLY);
2565 #endif
2566 if (fd == -1)
2567 barf("loadObj: can't open `%s'", path);
2568
2569 image = mmapForLinker(fileSize, 0, fd);
2570
2571 close(fd);
2572
2573 #else /* !USE_MMAP */
2574 /* load the image into memory */
2575 f = pathopen(path, WSTR("rb"));
2576 if (!f)
2577 barf("loadObj: can't read `%" PATH_FMT "'", path);
2578
2579 # if defined(mingw32_HOST_OS)
2580 // TODO: We would like to use allocateExec here, but allocateExec
2581 // cannot currently allocate blocks large enough.
2582 {
2583 int offset;
2584 #if defined(x86_64_HOST_ARCH)
2585 /* We get back 8-byte aligned memory (is that guaranteed?), but
2586 the offsets to the sections within the file are all 4 mod 8
2587 (is that guaranteed?). We therefore need to offset the image
2588 by 4, so that all the pointers are 8-byte aligned, so that
2589 pointer tagging works. */
2590 offset = 4;
2591 #else
2592 offset = 0;
2593 #endif
2594 image = VirtualAlloc(NULL, fileSize + offset, MEM_RESERVE | MEM_COMMIT,
2595 PAGE_EXECUTE_READWRITE);
2596 image += offset;
2597 }
2598 # elif defined(darwin_HOST_OS)
2599 // In a Mach-O .o file, all sections can and will be misaligned
2600 // if the total size of the headers is not a multiple of the
2601 // desired alignment. This is fine for .o files that only serve
2602 // as input for the static linker, but it's not fine for us,
2603 // as SSE (used by gcc for floating point) and Altivec require
2604 // 16-byte alignment.
2605 // We calculate the correct alignment from the header before
2606 // reading the file, and then we misalign image on purpose so
2607 // that the actual sections end up aligned again.
2608 misalignment = machoGetMisalignment(f);
2609 image = stgMallocBytes(fileSize + misalignment, "loadObj(image)");
2610 image += misalignment;
2611 # else
2612 image = stgMallocBytes(fileSize, "loadObj(image)");
2613 # endif
2614
2615 {
2616 int n;
2617 n = fread ( image, 1, fileSize, f );
2618 if (n != fileSize)
2619 barf("loadObj: error whilst reading `%s'", path);
2620 }
2621 fclose(f);
2622 #endif /* USE_MMAP */
2623
2624 oc = mkOc(path, image, fileSize, NULL
2625 #ifndef USE_MMAP
2626 #ifdef darwin_HOST_OS
2627 , misalignment
2628 #endif
2629 #endif
2630 );
2631
2632 return loadOc(oc);
2633 }
2634
2635 static HsInt
2636 loadOc( ObjectCode* oc ) {
2637 int r;
2638
2639 IF_DEBUG(linker, debugBelch("loadOc: start\n"));
2640
2641 # if defined(OBJFORMAT_MACHO) && (defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH))
2642 r = ocAllocateSymbolExtras_MachO ( oc );
2643 if (!r) {
2644 IF_DEBUG(linker, debugBelch("loadOc: ocAllocateSymbolExtras_MachO failed\n"));
2645 return r;
2646 }
2647 # elif defined(OBJFORMAT_ELF) && (defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH) || defined(arm_HOST_ARCH))
2648 r = ocAllocateSymbolExtras_ELF ( oc );
2649 if (!r) {
2650 IF_DEBUG(linker, debugBelch("loadOc: ocAllocateSymbolExtras_ELF failed\n"));
2651 return r;
2652 }
2653 #endif
2654
2655 /* verify the in-memory image */
2656 # if defined(OBJFORMAT_ELF)
2657 r = ocVerifyImage_ELF ( oc );
2658 # elif defined(OBJFORMAT_PEi386)
2659 r = ocVerifyImage_PEi386 ( oc );
2660 # elif defined(OBJFORMAT_MACHO)
2661 r = ocVerifyImage_MachO ( oc );
2662 # else
2663 barf("loadObj: no verify method");
2664 # endif
2665 if (!r) {
2666 IF_DEBUG(linker, debugBelch("loadOc: ocVerifyImage_* failed\n"));
2667 return r;
2668 }
2669
2670 /* build the symbol list for this image */
2671 # if defined(OBJFORMAT_ELF)
2672 r = ocGetNames_ELF ( oc );
2673 # elif defined(OBJFORMAT_PEi386)
2674 r = ocGetNames_PEi386 ( oc );
2675 # elif defined(OBJFORMAT_MACHO)
2676 r = ocGetNames_MachO ( oc );
2677 # else
2678 barf("loadObj: no getNames method");
2679 # endif
2680 if (!r) {
2681 IF_DEBUG(linker, debugBelch("loadOc: ocGetNames_* failed\n"));
2682 return r;
2683 }
2684
2685 /* loaded, but not resolved yet */
2686 oc->status = OBJECT_LOADED;
2687 IF_DEBUG(linker, debugBelch("loadOc: done.\n"));
2688
2689 return 1;
2690 }
2691
2692 /* -----------------------------------------------------------------------------
2693 * resolve all the currently unlinked objects in memory
2694 *
2695 * Returns: 1 if ok, 0 on error.
2696 */
2697 HsInt
2698 resolveObjs( void )
2699 {
2700 ObjectCode *oc;
2701 int r;
2702
2703 IF_DEBUG(linker, debugBelch("resolveObjs: start\n"));
2704 initLinker();
2705
2706 for (oc = objects; oc; oc = oc->next) {
2707 if (oc->status != OBJECT_RESOLVED) {
2708 # if defined(OBJFORMAT_ELF)
2709 r = ocResolve_ELF ( oc );
2710 # elif defined(OBJFORMAT_PEi386)
2711 r = ocResolve_PEi386 ( oc );
2712 # elif defined(OBJFORMAT_MACHO)
2713 r = ocResolve_MachO ( oc );
2714 # else
2715 barf("resolveObjs: not implemented on this platform");
2716 # endif
2717 if (!r) { return r; }
2718 oc->status = OBJECT_RESOLVED;
2719 }
2720 }
2721 IF_DEBUG(linker, debugBelch("resolveObjs: done\n"));
2722 return 1;
2723 }
2724
2725 /* -----------------------------------------------------------------------------
2726 * delete an object from the pool
2727 */
2728 HsInt
2729 unloadObj( pathchar *path )
2730 {
2731 ObjectCode *oc, *prev;
2732 HsBool unloadedAnyObj = HS_BOOL_FALSE;
2733
2734 ASSERT(symhash != NULL);
2735 ASSERT(objects != NULL);
2736
2737 initLinker();
2738
2739 prev = NULL;
2740 for (oc = objects; oc; prev = oc, oc = oc->next) {
2741 if (!pathcmp(oc->fileName,path)) {
2742
2743 /* Remove all the mappings for the symbols within this
2744 * object..
2745 */
2746 {
2747 int i;
2748 for (i = 0; i < oc->n_symbols; i++) {
2749 if (oc->symbols[i] != NULL) {
2750 removeStrHashTable(symhash, oc->symbols[i], NULL);
2751 }
2752 }
2753 }
2754
2755 if (prev == NULL) {
2756 objects = oc->next;
2757 } else {
2758 prev->next = oc->next;
2759 }
2760
2761 // We're going to leave this in place, in case there are
2762 // any pointers from the heap into it:
2763 // #ifdef mingw32_HOST_OS
2764 // If uncommenting, note that currently oc->image is
2765 // not the right address to free on Win64, as we added
2766 // 4 bytes of padding at the start
2767 // VirtualFree(oc->image);
2768 // #else
2769 // stgFree(oc->image);
2770 // #endif
2771 stgFree(oc->fileName);
2772 stgFree(oc->archiveMemberName);
2773 stgFree(oc->symbols);
2774 stgFree(oc->sections);
2775 stgFree(oc);
2776
2777 /* This could be a member of an archive so continue
2778 * unloading other members. */
2779 unloadedAnyObj = HS_BOOL_TRUE;
2780 }
2781 }
2782
2783 if (unloadedAnyObj) {
2784 return 1;
2785 }
2786 else {
2787 errorBelch("unloadObj: can't find `%" PATH_FMT "' to unload", path);
2788 return 0;
2789 }
2790 }
2791
2792 /* -----------------------------------------------------------------------------
2793 * Sanity checking. For each ObjectCode, maintain a list of address ranges
2794 * which may be prodded during relocation, and abort if we try and write
2795 * outside any of these.
2796 */
2797 static void
2798 addProddableBlock ( ObjectCode* oc, void* start, int size )
2799 {
2800 ProddableBlock* pb
2801 = stgMallocBytes(sizeof(ProddableBlock), "addProddableBlock");
2802
2803 IF_DEBUG(linker, debugBelch("addProddableBlock: %p %p %d\n", oc, start, size));
2804 ASSERT(size > 0);
2805 pb->start = start;
2806 pb->size = size;
2807 pb->next = oc->proddables;
2808 oc->proddables = pb;
2809 }
2810
2811 static void
2812 checkProddableBlock (ObjectCode *oc, void *addr, size_t size )
2813 {
2814 ProddableBlock* pb;
2815
2816 for (pb = oc->proddables; pb != NULL; pb = pb->next) {
2817 char* s = (char*)(pb->start);
2818 char* e = s + pb->size;
2819 char* a = (char*)addr;
2820 if (a >= s && (a+size) <= e) return;
2821 }
2822 barf("checkProddableBlock: invalid fixup in runtime linker: %p", addr);
2823 }
2824
2825 /* -----------------------------------------------------------------------------
2826 * Section management.
2827 */
2828 static void
2829 addSection ( ObjectCode* oc, SectionKind kind,
2830 void* start, void* end )
2831 {
2832 Section* s = stgMallocBytes(sizeof(Section), "addSection");
2833 s->start = start;
2834 s->end = end;
2835 s->kind = kind;
2836 s->next = oc->sections;
2837 oc->sections = s;
2838
2839 IF_DEBUG(linker, debugBelch("addSection: %p-%p (size %lld), kind %d\n",
2840 start, ((char*)end)-1, ((long long)(size_t)end) - ((long long)(size_t)start) + 1, kind ));
2841 }
2842
2843
2844 /* --------------------------------------------------------------------------
2845 * Symbol Extras.
2846 * This is about allocating a small chunk of memory for every symbol in the
2847 * object file. We make sure that the SymboLExtras are always "in range" of
2848 * limited-range PC-relative instructions on various platforms by allocating
2849 * them right next to the object code itself.
2850 */
2851
2852 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH) || defined(arm_HOST_ARCH)
2853 #if !defined(x86_64_HOST_ARCH) || !defined(mingw32_HOST_OS)
2854
2855 /*
2856 ocAllocateSymbolExtras
2857
2858 Allocate additional space at the end of the object file image to make room
2859 for jump islands (powerpc, x86_64, arm) and GOT entries (x86_64).
2860
2861 PowerPC relative branch instructions have a 24 bit displacement field.
2862 As PPC code is always 4-byte-aligned, this yields a +-32MB range.
2863 If a particular imported symbol is outside this range, we have to redirect
2864 the jump to a short piece of new code that just loads the 32bit absolute
2865 address and jumps there.
2866 On x86_64, PC-relative jumps and PC-relative accesses to the GOT are limited
2867 to 32 bits (+-2GB).
2868
2869 This function just allocates space for one SymbolExtra for every
2870 undefined symbol in the object file. The code for the jump islands is
2871 filled in by makeSymbolExtra below.
2872 */
2873
2874 static int ocAllocateSymbolExtras( ObjectCode* oc, int count, int first )
2875 {
2876 #ifdef USE_MMAP
2877 int pagesize, n, m;
2878 #endif
2879 int aligned;
2880 #ifndef USE_MMAP
2881 int misalignment = 0;
2882 #ifdef darwin_HOST_OS
2883 misalignment = oc->misalignment;
2884 #endif
2885 #endif
2886
2887 if( count > 0 )
2888 {
2889 // round up to the nearest 4
2890 aligned = (oc->fileSize + 3) & ~3;
2891
2892 #ifdef USE_MMAP
2893 pagesize = getpagesize();
2894 n = ROUND_UP( oc->fileSize, pagesize );
2895 m = ROUND_UP( aligned + sizeof (SymbolExtra) * count, pagesize );
2896
2897 /* we try to use spare space at the end of the last page of the
2898 * image for the jump islands, but if there isn't enough space
2899 * then we have to map some (anonymously, remembering MAP_32BIT).
2900 */
2901 if( m > n ) // we need to allocate more pages
2902 {
2903 if (USE_CONTIGUOUS_MMAP)
2904 {
2905 /* Keep image and symbol_extras contiguous */
2906 void *new = mmapForLinker(n + (sizeof(SymbolExtra) * count),
2907 MAP_ANONYMOUS, -1);
2908 if (new)
2909 {
2910 memcpy(new, oc->image, oc->fileSize);
2911 munmap(oc->image, n);
2912 oc->image = new;
2913 oc->symbol_extras = (SymbolExtra *) (oc->image + n);
2914 }
2915 else
2916 oc->symbol_extras = NULL;
2917 }
2918 else
2919 {
2920 oc->symbol_extras = mmapForLinker(sizeof(SymbolExtra) * count,
2921 MAP_ANONYMOUS, -1);
2922 }
2923 }
2924 else
2925 {
2926 oc->symbol_extras = (SymbolExtra *) (oc->image + aligned);
2927 }
2928 #else
2929 oc->image -= misalignment;
2930 oc->image = stgReallocBytes( oc->image,
2931 misalignment +
2932 aligned + sizeof (SymbolExtra) * count,
2933 "ocAllocateSymbolExtras" );
2934 oc->image += misalignment;
2935
2936 oc->symbol_extras = (SymbolExtra *) (oc->image + aligned);
2937 #endif /* USE_MMAP */
2938
2939 memset( oc->symbol_extras, 0, sizeof (SymbolExtra) * count );
2940 }
2941 else
2942 oc->symbol_extras = NULL;
2943
2944 oc->first_symbol_extra = first;
2945 oc->n_symbol_extras = count;
2946
2947 return 1;
2948 }
2949
2950 #endif
2951 #endif // defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH) || defined(arm_HOST_ARCH)
2952
2953 #if defined(arm_HOST_ARCH)
2954
2955 static void
2956 ocFlushInstructionCache( ObjectCode *oc )
2957 {
2958 // Object code
2959 __clear_cache(oc->image, oc->image + oc->fileSize);
2960 // Jump islands
2961 __clear_cache(oc->symbol_extras, &oc->symbol_extras[oc->n_symbol_extras]);
2962 }
2963
2964 #endif
2965
2966 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
2967 #if !defined(x86_64_HOST_ARCH) || !defined(mingw32_HOST_OS)
2968
2969 static SymbolExtra* makeSymbolExtra( ObjectCode* oc,
2970 unsigned long symbolNumber,
2971 unsigned long target )
2972 {
2973 SymbolExtra *extra;
2974
2975 ASSERT( symbolNumber >= oc->first_symbol_extra
2976 && symbolNumber - oc->first_symbol_extra < oc->n_symbol_extras);
2977
2978 extra = &oc->symbol_extras[symbolNumber - oc->first_symbol_extra];
2979
2980 #ifdef powerpc_HOST_ARCH
2981 // lis r12, hi16(target)
2982 extra->jumpIsland.lis_r12 = 0x3d80;
2983 extra->jumpIsland.hi_addr = target >> 16;
2984
2985 // ori r12, r12, lo16(target)
2986 extra->jumpIsland.ori_r12_r12 = 0x618c;
2987 extra->jumpIsland.lo_addr = target & 0xffff;
2988
2989 // mtctr r12
2990 extra->jumpIsland.mtctr_r12 = 0x7d8903a6;
2991
2992 // bctr
2993 extra->jumpIsland.bctr = 0x4e800420;
2994 #endif
2995 #ifdef x86_64_HOST_ARCH
2996 // jmp *-14(%rip)
2997 static uint8_t jmp[] = { 0xFF, 0x25, 0xF2, 0xFF, 0xFF, 0xFF };
2998 extra->addr = target;
2999 memcpy(extra->jumpIsland, jmp, 6);
3000 #endif
3001
3002 return extra;
3003 }
3004
3005 #endif
3006 #endif // defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
3007
3008 #ifdef arm_HOST_ARCH
3009 static SymbolExtra* makeArmSymbolExtra( ObjectCode* oc,
3010 unsigned long symbolNumber,
3011 unsigned long target,
3012 int fromThumb,
3013 int toThumb )
3014 {
3015 SymbolExtra *extra;
3016
3017 ASSERT( symbolNumber >= oc->first_symbol_extra
3018 && symbolNumber - oc->first_symbol_extra < oc->n_symbol_extras);
3019
3020 extra = &oc->symbol_extras[symbolNumber - oc->first_symbol_extra];
3021
3022 // Make sure instruction mode bit is set properly
3023 if (toThumb)
3024 target |= 1;
3025 else
3026 target &= ~1;
3027
3028 if (!fromThumb) {
3029 // In ARM encoding:
3030 // movw r12, #0
3031 // movt r12, #0
3032 // bx r12
3033 uint32_t code[] = { 0xe300c000, 0xe340c000, 0xe12fff1c };
3034
3035 // Patch lower half-word into movw
3036 code[0] |= ((target>>12) & 0xf) << 16;
3037 code[0] |= target & 0xfff;
3038 // Patch upper half-word into movt
3039 target >>= 16;
3040 code[1] |= ((target>>12) & 0xf) << 16;
3041 code[1] |= target & 0xfff;
3042
3043 memcpy(extra->jumpIsland, code, 12);
3044
3045 } else {
3046 // In Thumb encoding:
3047 // movw r12, #0
3048 // movt r12, #0
3049 // bx r12
3050 uint16_t code[] = { 0xf240, 0x0c00,
3051 0xf2c0, 0x0c00,
3052 0x4760 };
3053
3054 // Patch lower half-word into movw
3055 code[0] |= (target>>12) & 0xf;
3056 code[0] |= ((target>>11) & 0x1) << 10;
3057 code[1] |= ((target>>8) & 0x7) << 12;
3058 code[1] |= target & 0xff;
3059 // Patch upper half-word into movt
3060 target >>= 16;
3061 code[2] |= (target>>12) & 0xf;
3062 code[2] |= ((target>>11) & 0x1) << 10;
3063 code[3] |= ((target>>8) & 0x7) << 12;
3064 code[3] |= target & 0xff;
3065
3066 memcpy(extra->jumpIsland, code, 10);
3067 }
3068
3069 return extra;
3070 }
3071 #endif // arm_HOST_ARCH
3072
3073 /* --------------------------------------------------------------------------
3074 * PowerPC specifics (instruction cache flushing)
3075 * ------------------------------------------------------------------------*/
3076
3077 #ifdef powerpc_HOST_ARCH
3078 /*
3079 ocFlushInstructionCache
3080
3081 Flush the data & instruction caches.
3082 Because the PPC has split data/instruction caches, we have to
3083 do that whenever we modify code at runtime.
3084 */
3085
3086 static void
3087 ocFlushInstructionCacheFrom(void* begin, size_t length)
3088 {
3089 size_t n = (length + 3) / 4;
3090 unsigned long* p = begin;
3091
3092 while (n--)
3093 {
3094 __asm__ volatile ( "dcbf 0,%0\n\t"
3095 "sync\n\t"
3096 "icbi 0,%0"
3097 :
3098 : "r" (p)
3099 );
3100 p++;
3101 }
3102 __asm__ volatile ( "sync\n\t"
3103 "isync"
3104 );
3105 }
3106
3107 static void
3108 ocFlushInstructionCache( ObjectCode *oc )
3109 {
3110 /* The main object code */
3111 ocFlushInstructionCacheFrom(oc->image
3112 #ifdef darwin_HOST_OS
3113 + oc->misalignment
3114 #endif
3115 , oc->fileSize);
3116
3117 /* Jump Islands */
3118 ocFlushInstructionCacheFrom(oc->symbol_extras, sizeof(SymbolExtra) * oc->n_symbol_extras);
3119 }
3120 #endif /* powerpc_HOST_ARCH */
3121
3122
3123 /* --------------------------------------------------------------------------
3124 * PEi386 specifics (Win32 targets)
3125 * ------------------------------------------------------------------------*/
3126
3127 /* The information for this linker comes from
3128 Microsoft Portable Executable
3129 and Common Object File Format Specification
3130 revision 5.1 January 1998
3131 which SimonM says comes from the MS Developer Network CDs.
3132
3133 It can be found there (on older CDs), but can also be found
3134 online at:
3135
3136 http://www.microsoft.com/hwdev/hardware/PECOFF.asp
3137
3138 (this is Rev 6.0 from February 1999).
3139
3140 Things move, so if that fails, try searching for it via
3141
3142 http://www.google.com/search?q=PE+COFF+specification
3143
3144 The ultimate reference for the PE format is the Winnt.h
3145 header file that comes with the Platform SDKs; as always,
3146 implementations will drift wrt their documentation.
3147
3148 A good background article on the PE format is Matt Pietrek's
3149 March 1994 article in Microsoft System Journal (MSJ)
3150 (Vol.9, No. 3): "Peering Inside the PE: A Tour of the
3151 Win32 Portable Executable File Format." The info in there
3152 has recently been updated in a two part article in
3153 MSDN magazine, issues Feb and March 2002,
3154 "Inside Windows: An In-Depth Look into the Win32 Portable
3155 Executable File Format"
3156
3157 John Levine's book "Linkers and Loaders" contains useful
3158 info on PE too.
3159 */
3160
3161
3162 #if defined(OBJFORMAT_PEi386)
3163
3164
3165
3166 typedef unsigned char UChar;
3167 typedef unsigned short UInt16;
3168 typedef unsigned int UInt32;
3169 typedef int Int32;
3170 typedef unsigned long long int UInt64;
3171
3172
3173 typedef
3174 struct {
3175 UInt16 Machine;
3176 UInt16 NumberOfSections;
3177 UInt32 TimeDateStamp;
3178 UInt32 PointerToSymbolTable;
3179 UInt32 NumberOfSymbols;
3180 UInt16 SizeOfOptionalHeader;
3181 UInt16 Characteristics;
3182 }
3183 COFF_header;
3184
3185 #define sizeof_COFF_header 20
3186
3187
3188 typedef
3189 struct {
3190 UChar Name[8];
3191 UInt32 VirtualSize;
3192 UInt32 VirtualAddress;
3193 UInt32 SizeOfRawData;
3194 UInt32 PointerToRawData;
3195 UInt32 PointerToRelocations;
3196 UInt32 PointerToLinenumbers;
3197 UInt16 NumberOfRelocations;
3198 UInt16 NumberOfLineNumbers;
3199 UInt32 Characteristics;
3200 }
3201 COFF_section;
3202
3203 #define sizeof_COFF_section 40
3204
3205
3206 typedef
3207 struct {
3208 UChar Name[8];
3209 UInt32 Value;
3210 UInt16 SectionNumber;
3211 UInt16 Type;
3212 UChar StorageClass;
3213 UChar NumberOfAuxSymbols;
3214 }
3215 COFF_symbol;
3216
3217 #define sizeof_COFF_symbol 18
3218
3219
3220 typedef
3221 struct {
3222 UInt32 VirtualAddress;
3223 UInt32 SymbolTableIndex;
3224 UInt16 Type;
3225 }
3226 COFF_reloc;
3227
3228 #define sizeof_COFF_reloc 10
3229
3230
3231 /* From PE spec doc, section 3.3.2 */
3232 /* Note use of MYIMAGE_* since IMAGE_* are already defined in
3233 windows.h -- for the same purpose, but I want to know what I'm
3234 getting, here. */
3235 #define MYIMAGE_FILE_RELOCS_STRIPPED 0x0001
3236 #define MYIMAGE_FILE_EXECUTABLE_IMAGE 0x0002
3237 #define MYIMAGE_FILE_DLL 0x2000
3238 #define MYIMAGE_FILE_SYSTEM 0x1000
3239 #define MYIMAGE_FILE_BYTES_REVERSED_HI 0x8000
3240 #define MYIMAGE_FILE_BYTES_REVERSED_LO 0x0080
3241 #define MYIMAGE_FILE_32BIT_MACHINE 0x0100
3242
3243 /* From PE spec doc, section 5.4.2 and 5.4.4 */
3244 #define MYIMAGE_SYM_CLASS_EXTERNAL 2
3245 #define MYIMAGE_SYM_CLASS_STATIC 3
3246 #define MYIMAGE_SYM_UNDEFINED 0
3247
3248 /* From PE spec doc, section 4.1 */
3249 #define MYIMAGE_SCN_CNT_CODE 0x00000020
3250 #define MYIMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
3251 #define MYIMAGE_SCN_LNK_NRELOC_OVFL 0x01000000
3252
3253 /* From PE spec doc, section 5.2.1 */
3254 #define MYIMAGE_REL_I386_DIR32 0x0006
3255 #define MYIMAGE_REL_I386_REL32 0x0014
3256
3257
3258 /* We use myindex to calculate array addresses, rather than
3259 simply doing the normal subscript thing. That's because
3260 some of the above structs have sizes which are not
3261 a whole number of words. GCC rounds their sizes up to a
3262 whole number of words, which means that the address calcs
3263 arising from using normal C indexing or pointer arithmetic
3264 are just plain wrong. Sigh.
3265 */
3266 static UChar *
3267 myindex ( int scale, void* base, int index )
3268 {
3269 return
3270 ((UChar*)base) + scale * index;
3271 }
3272
3273
3274 static void
3275 printName ( UChar* name, UChar* strtab )
3276 {
3277 if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
3278 UInt32 strtab_offset = * (UInt32*)(name+4);
3279 debugBelch("%s", strtab + strtab_offset );
3280 } else {
3281 int i;
3282 for (i = 0; i < 8; i++) {
3283 if (name[i] == 0) break;
3284 debugBelch("%c", name[i] );
3285 }
3286 }
3287 }
3288
3289
3290 static void
3291 copyName ( UChar* name, UChar* strtab, UChar* dst, int dstSize )
3292 {
3293 if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
3294 UInt32 strtab_offset = * (UInt32*)(name+4);
3295 strncpy ( (char*)dst, (char*)strtab+strtab_offset, dstSize );
3296 dst[dstSize-1] = 0;
3297 } else {
3298 int i = 0;
3299 while (1) {
3300 if (i >= 8) break;
3301 if (name[i] == 0) break;
3302 dst[i] = name[i];
3303 i++;
3304 }
3305 dst[i] = 0;
3306 }
3307 }
3308
3309
3310 static UChar *
3311 cstring_from_COFF_symbol_name ( UChar* name, UChar* strtab )
3312 {
3313 UChar* newstr;
3314 /* If the string is longer than 8 bytes, look in the
3315 string table for it -- this will be correctly zero terminated.
3316 */
3317 if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
3318 UInt32 strtab_offset = * (UInt32*)(name+4);
3319 return ((UChar*)strtab) + strtab_offset;
3320 }
3321 /* Otherwise, if shorter than 8 bytes, return the original,
3322 which by defn is correctly terminated.
3323 */
3324 if (name[7]==0) return name;
3325 /* The annoying case: 8 bytes. Copy into a temporary
3326 (XXX which is never freed ...)
3327 */
3328 newstr = stgMallocBytes(9, "cstring_from_COFF_symbol_name");
3329 ASSERT(newstr);
3330 strncpy((char*)newstr,(char*)name,8);
3331 newstr[8] = 0;
3332 return newstr;
3333 }
3334
3335 /* Getting the name of a section is mildly tricky, so we make a
3336 function for it. Sadly, in one case we have to copy the string
3337 (when it is exactly 8 bytes long there's no trailing '\0'), so for
3338 consistency we *always* copy the string; the caller must free it
3339 */
3340 static char *
3341 cstring_from_section_name (UChar* name, UChar* strtab)
3342 {
3343 char *newstr;
3344
3345 if (name[0]=='/') {
3346 int strtab_offset = strtol((char*)name+1,NULL,10);
3347 int len = strlen(((char*)strtab) + strtab_offset);
3348
3349 newstr = stgMallocBytes(len+1, "cstring_from_section_symbol_name");
3350 strcpy((char*)newstr, (char*)((UChar*)strtab) + strtab_offset);
3351 return newstr;
3352 }
3353 else
3354 {
3355 newstr = stgMallocBytes(9, "cstring_from_section_symbol_name");
3356 ASSERT(newstr);
3357 strncpy((char*)newstr,(char*)name,8);
3358 newstr[8] = 0;
3359 return newstr;
3360 }
3361 }
3362
3363 /* Just compares the short names (first 8 chars) */
3364 static COFF_section *
3365 findPEi386SectionCalled ( ObjectCode* oc, UChar* name )
3366 {
3367 int i;
3368 COFF_header* hdr
3369 = (COFF_header*)(oc->image);
3370 COFF_section* sectab
3371 = (COFF_section*) (
3372 ((UChar*)(oc->image))
3373 + sizeof_COFF_header + hdr->SizeOfOptionalHeader
3374 );
3375 for (i = 0; i < hdr->NumberOfSections; i++) {
3376 UChar* n1;
3377 UChar* n2;
3378 COFF_section* section_i
3379 = (COFF_section*)
3380 myindex ( sizeof_COFF_section, sectab, i );
3381 n1 = (UChar*) &(section_i->Name);
3382 n2 = name;
3383 if (n1[0]==n2[0] && n1[1]==n2[1] && n1[2]==n2[2] &&
3384 n1[3]==n2[3] && n1[4]==n2[4] && n1[5]==n2[5] &&
3385 n1[6]==n2[6] && n1[7]==n2[7])
3386 return section_i;
3387 }
3388
3389 return NULL;
3390 }
3391
3392 static void
3393 zapTrailingAtSign ( UChar* sym )
3394 {
3395 # define my_isdigit(c) ((c) >= '0' && (c) <= '9')
3396 int i, j;
3397 if (sym[0] == 0) return;
3398 i = 0;
3399 while (sym[i] != 0) i++;
3400 i--;
3401 j = i;
3402 while (j > 0 && my_isdigit(sym[j])) j--;
3403 if (j > 0 && sym[j] == '@' && j != i) sym[j] = 0;
3404 # undef my_isdigit
3405 }
3406
3407 static void *
3408 lookupSymbolInDLLs ( UChar *lbl )
3409 {
3410 OpenedDLL* o_dll;
3411 void *sym;
3412
3413 for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
3414 /* debugBelch("look in %s for %s\n", o_dll->name, lbl); */
3415
3416 if (lbl[0] == '_') {
3417 /* HACK: if the name has an initial underscore, try stripping
3418 it off & look that up first. I've yet to verify whether there's
3419 a Rule that governs whether an initial '_' *should always* be
3420 stripped off when mapping from import lib name to the DLL name.
3421 */
3422 sym = GetProcAddress(o_dll->instance, (char*)(lbl+1));
3423 if (sym != NULL) {
3424 /*debugBelch("found %s in %s\n", lbl+1,o_dll->name);*/
3425 return sym;
3426 }
3427 }
3428 sym = GetProcAddress(o_dll->instance, (char*)lbl);
3429 if (sym != NULL) {
3430 /*debugBelch("found %s in %s\n", lbl,o_dll->name);*/
3431 return sym;
3432 }
3433 }
3434 return NULL;
3435 }
3436
3437
3438 static int
3439 ocVerifyImage_PEi386 ( ObjectCode* oc )
3440 {
3441 int i;
3442 UInt32 j, noRelocs;
3443 COFF_header* hdr;
3444 COFF_section* sectab;
3445 COFF_symbol* symtab;
3446 UChar* strtab;
3447 /* debugBelch("\nLOADING %s\n", oc->fileName); */
3448 hdr = (COFF_header*)(oc->image);
3449 sectab = (COFF_section*) (
3450 ((UChar*)(oc->image))
3451 + sizeof_COFF_header + hdr->SizeOfOptionalHeader
3452 );
3453 symtab = (COFF_symbol*) (
3454 ((UChar*)(oc->image))
3455 + hdr->PointerToSymbolTable
3456 );
3457 strtab = ((UChar*)symtab)
3458 + hdr->NumberOfSymbols * sizeof_COFF_symbol;
3459
3460 #if defined(i386_HOST_ARCH)
3461 if (hdr->Machine != 0x14c) {
3462 errorBelch("%" PATH_FMT ": Not x86 PEi386", oc->fileName);
3463 return 0;
3464 }
3465 #elif defined(x86_64_HOST_ARCH)
3466 if (hdr->Machine != 0x8664) {
3467 errorBelch("%" PATH_FMT ": Not x86_64 PEi386", oc->fileName);
3468 return 0;
3469 }
3470 #else
3471 errorBelch("PEi386 not supported on this arch");
3472 #endif
3473
3474 if (hdr->SizeOfOptionalHeader != 0) {
3475 errorBelch("%" PATH_FMT ": PEi386 with nonempty optional header", oc->fileName);
3476 return 0;
3477 }
3478 if ( /* (hdr->Characteristics & MYIMAGE_FILE_RELOCS_STRIPPED) || */
3479 (hdr->Characteristics & MYIMAGE_FILE_EXECUTABLE_IMAGE) ||
3480 (hdr->Characteristics & MYIMAGE_FILE_DLL) ||
3481 (hdr->Characteristics & MYIMAGE_FILE_SYSTEM) ) {
3482 errorBelch("%" PATH_FMT ": Not a PEi386 object file", oc->fileName);
3483 return 0;
3484 }
3485 if ( (hdr->Characteristics & MYIMAGE_FILE_BYTES_REVERSED_HI)
3486 /* || !(hdr->Characteristics & MYIMAGE_FILE_32BIT_MACHINE) */ ) {
3487 errorBelch("%" PATH_FMT ": Invalid PEi386 word size or endiannness: %d",
3488 oc->fileName,
3489 (int)(hdr->Characteristics));
3490 return 0;
3491 }
3492 /* If the string table size is way crazy, this might indicate that
3493 there are more than 64k relocations, despite claims to the
3494 contrary. Hence this test. */
3495 /* debugBelch("strtab size %d\n", * (UInt32*)strtab); */
3496 #if 0
3497 if ( (*(UInt32*)strtab) > 600000 ) {
3498 /* Note that 600k has no special significance other than being
3499 big enough to handle the almost-2MB-sized lumps that
3500 constitute HSwin32*.o. */
3501 debugBelch("PEi386 object has suspiciously large string table; > 64k relocs?");
3502 return 0;
3503 }
3504 #endif
3505
3506 /* No further verification after this point; only debug printing. */
3507 i = 0;
3508 IF_DEBUG(linker, i=1);
3509 if (i == 0) return 1;
3510
3511 debugBelch( "sectab offset = %" FMT_Int "\n", ((UChar*)sectab) - ((UChar*)hdr) );
3512 debugBelch( "symtab offset = %" FMT_Int "\n", ((UChar*)symtab) - ((UChar*)hdr) );
3513 debugBelch( "strtab offset = %" FMT_Int "\n", ((UChar*)strtab) - ((UChar*)hdr) );
3514
3515 debugBelch("\n" );
3516 debugBelch( "Machine: 0x%x\n", (UInt32)(hdr->Machine) );
3517 debugBelch( "# sections: %d\n", (UInt32)(hdr->NumberOfSections) );
3518 debugBelch( "time/date: 0x%x\n", (UInt32)(hdr->TimeDateStamp) );
3519 debugBelch( "symtab offset: %d\n", (UInt32)(hdr->PointerToSymbolTable) );
3520 debugBelch( "# symbols: %d\n", (UInt32)(hdr->NumberOfSymbols) );
3521 debugBelch( "sz of opt hdr: %d\n", (UInt32)(hdr->SizeOfOptionalHeader) );
3522 debugBelch( "characteristics: 0x%x\n", (UInt32)(hdr->Characteristics) );
3523
3524 /* Print the section table. */
3525 debugBelch("\n" );
3526 for (i = 0; i < hdr->NumberOfSections; i++) {
3527 COFF_reloc* reltab;
3528 COFF_section* sectab_i
3529 = (COFF_section*)
3530 myindex ( sizeof_COFF_section, sectab, i );
3531 debugBelch(
3532 "\n"
3533 "section %d\n"
3534 " name `",
3535 i
3536 );
3537 printName ( sectab_i->Name, strtab );
3538 debugBelch(
3539 "'\n"
3540 " vsize %d\n"
3541 " vaddr %d\n"
3542 " data sz %d\n"
3543 " data off %d\n"
3544 " num rel %d\n"
3545 " off rel %d\n"
3546 " ptr raw 0x%x\n",
3547 sectab_i->VirtualSize,
3548 sectab_i->VirtualAddress,
3549 sectab_i->SizeOfRawData,
3550 sectab_i->PointerToRawData,
3551 sectab_i->NumberOfRelocations,
3552 sectab_i->PointerToRelocations,
3553 sectab_i->PointerToRawData
3554 );
3555 reltab = (COFF_reloc*) (
3556 ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
3557 );
3558
3559 if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
3560 /* If the relocation field (a short) has overflowed, the
3561 * real count can be found in the first reloc entry.
3562 *
3563 * See Section 4.1 (last para) of the PE spec (rev6.0).
3564 */
3565 COFF_reloc* rel = (COFF_reloc*)
3566 myindex ( sizeof_COFF_reloc, reltab, 0 );
3567 noRelocs = rel->VirtualAddress;
3568 j = 1;
3569 } else {
3570 noRelocs = sectab_i->NumberOfRelocations;
3571 j = 0;
3572 }
3573
3574 for (; j < noRelocs; j++) {
3575 COFF_symbol* sym;
3576 COFF_reloc* rel = (COFF_reloc*)
3577 myindex ( sizeof_COFF_reloc, reltab, j );
3578 debugBelch(
3579 " type 0x%-4x vaddr 0x%-8x name `",
3580 (UInt32)rel->Type,
3581 rel->VirtualAddress );
3582 sym = (COFF_symbol*)
3583 myindex ( sizeof_COFF_symbol, symtab, rel->SymbolTableIndex );
3584 /* Hmm..mysterious looking offset - what's it for? SOF */
3585 printName ( sym->Name, strtab -10 );
3586 debugBelch("'\n" );
3587 }
3588
3589 debugBelch("\n" );
3590 }
3591 debugBelch("\n" );
3592 debugBelch("string table has size 0x%x\n", * (UInt32*)strtab );
3593 debugBelch("---START of string table---\n");
3594 for (i = 4; i < *(Int32*)strtab; i++) {
3595 if (strtab[i] == 0)
3596 debugBelch("\n"); else
3597 debugBelch("%c", strtab[i] );
3598 }
3599 debugBelch("--- END of string table---\n");
3600
3601 debugBelch("\n" );
3602 i = 0;
3603 while (1) {
3604 COFF_symbol* symtab_i;
3605 if (i >= (Int32)(hdr->NumberOfSymbols)) break;
3606 symtab_i = (COFF_symbol*)
3607 myindex ( sizeof_COFF_symbol, symtab, i );
3608 debugBelch(
3609 "symbol %d\n"
3610 " name `",
3611 i
3612 );
3613 printName ( symtab_i->Name, strtab );
3614 debugBelch(
3615 "'\n"
3616 " value 0x%x\n"
3617 " 1+sec# %d\n"
3618 " type 0x%x\n"
3619 " sclass 0x%x\n"
3620 " nAux %d\n",
3621 symtab_i->Value,
3622 (Int32)(symtab_i->SectionNumber),
3623 (UInt32)symtab_i->Type,
3624 (UInt32)symtab_i->StorageClass,
3625 (UInt32)symtab_i->NumberOfAuxSymbols
3626 );
3627 i += symtab_i->NumberOfAuxSymbols;
3628 i++;
3629 }
3630
3631 debugBelch("\n" );
3632 return 1;
3633 }
3634
3635
3636 static int
3637 ocGetNames_PEi386 ( ObjectCode* oc )
3638 {
3639 COFF_header* hdr;
3640 COFF_section* sectab;
3641 COFF_symbol* symtab;
3642 UChar* strtab;
3643
3644 UChar* sname;
3645 void* addr;
3646 int i;
3647
3648 hdr = (COFF_header*)(oc->image);
3649 sectab = (COFF_section*) (
3650 ((UChar*)(oc->image))
3651 + sizeof_COFF_header + hdr->SizeOfOptionalHeader
3652 );
3653 symtab = (COFF_symbol*) (
3654 ((UChar*)(oc->image))
3655 + hdr->PointerToSymbolTable
3656 );
3657 strtab = ((UChar*)(oc->image))
3658 + hdr->PointerToSymbolTable
3659 + hdr->NumberOfSymbols * sizeof_COFF_symbol;
3660
3661 /* Allocate space for any (local, anonymous) .bss sections. */
3662
3663 for (i = 0; i < hdr->NumberOfSections; i++) {
3664 UInt32 bss_sz;
3665 UChar* zspace;
3666 COFF_section* sectab_i
3667 = (COFF_section*)
3668 myindex ( sizeof_COFF_section, sectab, i );
3669
3670 char *secname = cstring_from_section_name(sectab_i->Name, strtab);
3671
3672 if (0 != strcmp(secname, ".bss")) {
3673 stgFree(secname);
3674 continue;
3675 }
3676
3677 stgFree(secname);
3678
3679 /* sof 10/05: the PE spec text isn't too clear regarding what
3680 * the SizeOfRawData field is supposed to hold for object
3681 * file sections containing just uninitialized data -- for executables,
3682 * it is supposed to be zero; unclear what it's supposed to be
3683 * for object files. However, VirtualSize is guaranteed to be
3684 * zero for object files, which definitely suggests that SizeOfRawData
3685 * will be non-zero (where else would the size of this .bss section be
3686 * stored?) Looking at the COFF_section info for incoming object files,
3687 * this certainly appears to be the case.
3688 *
3689 * => I suspect we've been incorrectly handling .bss sections in (relocatable)
3690 * object files up until now. This turned out to bite us with ghc-6.4.1's use
3691 * of gcc-3.4.x, which has started to emit initially-zeroed-out local 'static'
3692 * variable decls into to the .bss section. (The specific function in Q which
3693 * triggered this is libraries/base/cbits/dirUtils.c:__hscore_getFolderPath())
3694 */
3695 if (sectab_i->VirtualSize == 0 && sectab_i->SizeOfRawData == 0) continue;
3696 /* This is a non-empty .bss section. Allocate zeroed space for
3697 it, and set its PointerToRawData field such that oc->image +
3698 PointerToRawData == addr_of_zeroed_space. */
3699 bss_sz = sectab_i->VirtualSize;
3700 if ( bss_sz < sectab_i->SizeOfRawData) { bss_sz = sectab_i->SizeOfRawData; }
3701 zspace = stgCallocBytes(1, bss_sz, "ocGetNames_PEi386(anonymous bss)");
3702 sectab_i->PointerToRawData = ((UChar*)zspace) - ((UChar*)(oc->image));
3703 addProddableBlock(oc, zspace, bss_sz);
3704 /* debugBelch("BSS anon section at 0x%x\n", zspace); */
3705 }
3706
3707 /* Copy section information into the ObjectCode. */
3708
3709 for (i = 0; i < hdr->NumberOfSections; i++) {
3710 UChar* start;
3711 UChar* end;
3712 UInt32 sz;
3713
3714 SectionKind kind
3715 = SECTIONKIND_OTHER;
3716 COFF_section* sectab_i
3717 = (COFF_section*)
3718 myindex ( sizeof_COFF_section, sectab, i );
3719
3720 char *secname = cstring_from_section_name(sectab_i->Name, strtab);
3721
3722 IF_DEBUG(linker, debugBelch("section name = %s\n", secname ));
3723
3724 # if 0
3725 /* I'm sure this is the Right Way to do it. However, the
3726 alternative of testing the sectab_i->Name field seems to
3727 work ok with Cygwin.
3728 */
3729 if (sectab_i->Characteristics & MYIMAGE_SCN_CNT_CODE ||
3730 sectab_i->Characteristics & MYIMAGE_SCN_CNT_INITIALIZED_DATA)
3731 kind = SECTIONKIND_CODE_OR_RODATA;
3732 # endif
3733
3734 if (0==strcmp(".text",(char*)secname) ||
3735 0==strcmp(".text.startup",(char*)secname) ||
3736 0==strcmp(".rdata",(char*)secname)||
3737 0==strcmp(".rodata",(char*)secname))
3738 kind = SECTIONKIND_CODE_OR_RODATA;
3739 if (0==strcmp(".data",(char*)secname) ||
3740 0==strcmp(".bss",(char*)secname))
3741 kind = SECTIONKIND_RWDATA;
3742
3743 ASSERT(sectab_i->SizeOfRawData == 0 || sectab_i->VirtualSize == 0);
3744 sz = sectab_i->SizeOfRawData;
3745 if (sz < sectab_i->VirtualSize) sz = sectab_i->VirtualSize;
3746
3747 start = ((UChar*)(oc->image)) + sectab_i->PointerToRawData;
3748 end = start + sz - 1;
3749
3750 if (kind == SECTIONKIND_OTHER
3751 /* Ignore sections called which contain stabs debugging
3752 information. */
3753 && 0 != strcmp(".stab", (char*)secname)
3754 && 0 != strcmp(".stabstr", (char*)secname)
3755 /* Ignore sections called which contain exception information. */
3756 && 0 != strcmp(".pdata", (char*)secname)
3757 && 0 != strcmp(".xdata", (char*)secname)
3758 /* ignore constructor section for now */
3759 && 0 != strcmp(".ctors", (char*)secname)
3760 /* ignore section generated from .ident */
3761 && 0!= strncmp(".debug", (char*)secname, 6)
3762 /* ignore unknown section that appeared in gcc 3.4.5(?) */
3763 && 0!= strcmp(".reloc", (char*)secname)
3764 && 0 != strcmp(".rdata$zzz", (char*)secname)
3765 ) {
3766 errorBelch("Unknown PEi386 section name `%s' (while processing: %" PATH_FMT")", secname, oc->fileName);
3767 stgFree(secname);
3768 return 0;
3769 }
3770
3771 if (kind != SECTIONKIND_OTHER && end >= start) {
3772 if ((((size_t)(start)) % sizeof(void *)) != 0) {
3773 barf("Misaligned section: %p", start);
3774 }
3775
3776 addSection(oc, kind, start, end);
3777 addProddableBlock(oc, start, end - start + 1);
3778 }
3779
3780 stgFree(secname);
3781 }
3782
3783 /* Copy exported symbols into the ObjectCode. */
3784
3785 oc->n_symbols = hdr->NumberOfSymbols;
3786 oc->symbols = stgMallocBytes(oc->n_symbols * sizeof(char*),
3787 "ocGetNames_PEi386(oc->symbols)");
3788 /* Call me paranoid; I don't care. */
3789 for (i = 0; i < oc->n_symbols; i++)
3790 oc->symbols[i] = NULL;
3791
3792 i = 0;
3793 while (1) {
3794 COFF_symbol* symtab_i;
3795 if (i >= (Int32)(hdr->NumberOfSymbols)) break;
3796 symtab_i = (COFF_symbol*)
3797 myindex ( sizeof_COFF_symbol, symtab, i );
3798
3799 addr = NULL;
3800
3801 if (symtab_i->StorageClass == MYIMAGE_SYM_CLASS_EXTERNAL
3802 && symtab_i->SectionNumber != MYIMAGE_SYM_UNDEFINED) {
3803 /* This symbol is global and defined, viz, exported */
3804 /* for MYIMAGE_SYMCLASS_EXTERNAL
3805 && !MYIMAGE_SYM_UNDEFINED,
3806 the address of the symbol is:
3807 address of relevant section + offset in section
3808 */
3809 COFF_section* sectabent
3810 = (COFF_section*) myindex ( sizeof_COFF_section,
3811 sectab,
3812 symtab_i->SectionNumber-1 );
3813 addr = ((UChar*)(oc->image))
3814 + (sectabent->PointerToRawData
3815 + symtab_i->Value);
3816 }
3817 else
3818 if (symtab_i->SectionNumber == MYIMAGE_SYM_UNDEFINED
3819 && symtab_i->Value > 0) {
3820 /* This symbol isn't in any section at all, ie, global bss.
3821 Allocate zeroed space for it. */
3822 addr = stgCallocBytes(1, symtab_i->Value,
3823 "ocGetNames_PEi386(non-anonymous bss)");
3824 addSection(oc, SECTIONKIND_RWDATA, addr,
3825 ((UChar*)addr) + symtab_i->Value - 1);
3826 addProddableBlock(oc, addr, symtab_i->Value);
3827 /* debugBelch("BSS section at 0x%x\n", addr); */
3828 }
3829
3830 if (addr != NULL ) {
3831 sname = cstring_from_COFF_symbol_name ( symtab_i->Name, strtab );
3832 /* debugBelch("addSymbol %p `%s \n", addr,sname); */
3833 IF_DEBUG(linker, debugBelch("addSymbol %p `%s'\n", addr,sname);)
3834 ASSERT(i >= 0 && i < oc->n_symbols);
3835 /* cstring_from_COFF_symbol_name always succeeds. */
3836 oc->symbols[i] = (char*)sname;
3837 ghciInsertStrHashTable(oc->fileName, symhash, (char*)sname, addr);
3838 } else {
3839 # if 0
3840 debugBelch(
3841 "IGNORING symbol %d\n"
3842 " name `",
3843 i
3844 );
3845 printName ( symtab_i->Name, strtab );
3846 debugBelch(
3847 "'\n"
3848 " value 0x%x\n"
3849 " 1+sec# %d\n"
3850 " type 0x%x\n"
3851 " sclass 0x%x\n"
3852 " nAux %d\n",
3853 symtab_i->Value,
3854 (Int32)(symtab_i->SectionNumber),
3855 (UInt32)symtab_i->Type,
3856 (UInt32)symtab_i->StorageClass,
3857 (UInt32)symtab_i->NumberOfAuxSymbols
3858 );
3859 # endif
3860 }
3861
3862 i += symtab_i->NumberOfAuxSymbols;
3863 i++;
3864 }
3865
3866 return 1;
3867 }
3868
3869
3870 static int
3871 ocResolve_PEi386 ( ObjectCode* oc )
3872 {
3873 COFF_header* hdr;
3874 COFF_section* sectab;
3875 COFF_symbol* symtab;
3876 UChar* strtab;
3877
3878 UInt32 A;
3879 size_t S;
3880 void * pP;
3881
3882 int i;
3883 UInt32 j, noRelocs;
3884
3885 /* ToDo: should be variable-sized? But is at least safe in the
3886 sense of buffer-overrun-proof. */
3887 UChar symbol[1000];
3888 /* debugBelch("resolving for %s\n", oc->fileName); */
3889
3890 hdr = (COFF_header*)(oc->image);
3891 sectab = (COFF_section*) (
3892 ((UChar*)(oc->image))
3893 + sizeof_COFF_header + hdr->SizeOfOptionalHeader
3894 );
3895 symtab = (COFF_symbol*) (
3896 ((UChar*)(oc->image))
3897 + hdr->PointerToSymbolTable
3898 );
3899 strtab = ((UChar*)(oc->image))
3900 + hdr->PointerToSymbolTable
3901 + hdr->NumberOfSymbols * sizeof_COFF_symbol;
3902
3903 for (i = 0; i < hdr->NumberOfSections; i++) {
3904 COFF_section* sectab_i
3905 = (COFF_section*)
3906 myindex ( sizeof_COFF_section, sectab, i );
3907 COFF_reloc* reltab
3908 = (COFF_reloc*) (
3909 ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
3910 );
3911
3912 char *secname = cstring_from_section_name(sectab_i->Name, strtab);
3913
3914 /* Ignore sections called which contain stabs debugging
3915 information. */
3916 if (0 == strcmp(".stab", (char*)secname)
3917 || 0 == strcmp(".stabstr", (char*)secname)
3918 || 0 == strcmp(".pdata", (char*)secname)
3919 || 0 == strcmp(".xdata", (char*)secname)
3920 || 0 == strcmp(".ctors", (char*)secname)
3921 || 0 == strncmp(".debug", (char*)secname, 6)
3922 || 0 == strcmp(".rdata$zzz", (char*)secname)) {
3923 stgFree(secname);
3924 continue;
3925 }
3926
3927 stgFree(secname);
3928
3929 if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
3930 /* If the relocation field (a short) has overflowed, the
3931 * real count can be found in the first reloc entry.
3932 *
3933 * See Section 4.1 (last para) of the PE spec (rev6.0).
3934 *
3935 * Nov2003 update: the GNU linker still doesn't correctly
3936 * handle the generation of relocatable object files with
3937 * overflown relocations. Hence the output to warn of potential
3938 * troubles.
3939 */
3940 COFF_reloc* rel = (COFF_reloc*)
3941 myindex ( sizeof_COFF_reloc, reltab, 0 );
3942 noRelocs = rel->VirtualAddress;
3943
3944 /* 10/05: we now assume (and check for) a GNU ld that is capable
3945 * of handling object files with (>2^16) of relocs.
3946 */
3947 #if 0
3948 debugBelch("WARNING: Overflown relocation field (# relocs found: %u)\n",
3949 noRelocs);
3950 #endif
3951 j = 1;
3952 } else {
3953 noRelocs = sectab_i->NumberOfRelocations;
3954 j = 0;
3955 }
3956
3957 for (; j < noRelocs; j++) {
3958 COFF_symbol* sym;
3959 COFF_reloc* reltab_j
3960 = (COFF_reloc*)
3961 myindex ( sizeof_COFF_reloc, reltab, j );
3962
3963 /* the location to patch */
3964 pP = (
3965 ((UChar*)(oc->image))
3966 + (sectab_i->PointerToRawData
3967 + reltab_j->VirtualAddress
3968 - sectab_i->VirtualAddress )
3969 );
3970 /* the existing contents of pP */
3971 A = *(UInt32*)pP;
3972 /* the symbol to connect to */
3973 sym = (COFF_symbol*)
3974 myindex ( sizeof_COFF_symbol,
3975 symtab, reltab_j->SymbolTableIndex );
3976 IF_DEBUG(linker,
3977 debugBelch(
3978 "reloc sec %2d num %3d: type 0x%-4x "
3979 "vaddr 0x%-8x name `",
3980 i, j,
3981 (UInt32)reltab_j->Type,
3982 reltab_j->VirtualAddress );
3983 printName ( sym->Name, strtab );
3984 debugBelch("'\n" ));
3985
3986 if (sym->StorageClass == MYIMAGE_SYM_CLASS_STATIC) {
3987 COFF_section* section_sym
3988 = findPEi386SectionCalled ( oc, sym->Name );
3989 if (!section_sym) {
3990 errorBelch("%" PATH_FMT ": can't find section `%s'", oc->fileName, sym->Name);
3991 return 0;
3992 }
3993 S = ((size_t)(oc->image))
3994 + ((size_t)(section_sym->PointerToRawData))
3995 + ((size_t)(sym->Value));
3996 } else {
3997 copyName ( sym->Name, strtab, symbol, 1000-1 );
3998 S = (size_t) lookupSymbol( (char*)symbol );
3999 if ((void*)S != NULL) goto foundit;
4000 errorBelch("%" PATH_FMT ": unknown symbol `%s'", oc->fileName, symbol);
4001 return 0;
4002 foundit:;
4003 }
4004 /* All supported relocations write at least 4 bytes */
4005 checkProddableBlock(oc, pP, 4);
4006 switch (reltab_j->Type) {
4007 #if defined(i386_HOST_ARCH)
4008 case MYIMAGE_REL_I386_DIR32:
4009 *(UInt32 *)pP = ((UInt32)S) + A;