1 /* -----------------------------------------------------------------------------
4 * Copyright (c) The GHC Team, 1994-2002.
5 * ---------------------------------------------------------------------------*/
7 #include "PosixSource.h"
15 #include "LdvProfile.h"
21 #include "Bytecodes.h"
23 #include "Disassembler.h"
24 #include "Interpreter.h"
26 #include <string.h> /* for memcpy */
32 /* --------------------------------------------------------------------------
33 * The bytecode interpreter
34 * ------------------------------------------------------------------------*/
36 /* Gather stats about entry, opcode, opcode-pair frequencies. For
37 tuning the interpreter. */
39 /* #define INTERP_STATS */
42 /* Sp points to the lowest live word on the stack. */
44 #define BCO_NEXT instrs[bciPtr++]
45 #define BCO_NEXT_32 (bciPtr += 2, (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
46 #define BCO_NEXT_64 (bciPtr += 4, (((StgWord) instrs[bciPtr-4]) << 48) + (((StgWord) instrs[bciPtr-3]) << 32) + (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
47 #if WORD_SIZE_IN_BITS == 32
48 #define BCO_NEXT_WORD BCO_NEXT_32
49 #elif WORD_SIZE_IN_BITS == 64
50 #define BCO_NEXT_WORD BCO_NEXT_64
52 #error Cannot cope with WORD_SIZE_IN_BITS being nether 32 nor 64
54 #define BCO_GET_LARGE_ARG ((bci & bci_FLAG_LARGE_ARGS) ? BCO_NEXT_WORD : BCO_NEXT)
56 #define BCO_PTR(n) (W_)ptrs[n]
57 #define BCO_LIT(n) literals[n]
59 #define LOAD_STACK_POINTERS \
60 Sp = cap->r.rCurrentTSO->sp; \
61 /* We don't change this ... */ \
62 SpLim = cap->r.rCurrentTSO->stack + RESERVED_STACK_WORDS;
64 #define SAVE_STACK_POINTERS \
65 cap->r.rCurrentTSO->sp = Sp
67 #define RETURN_TO_SCHEDULER(todo,retcode) \
68 SAVE_STACK_POINTERS; \
69 cap->r.rCurrentTSO->what_next = (todo); \
70 threadPaused(cap,cap->r.rCurrentTSO); \
71 cap->r.rRet = (retcode); \
74 #define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode) \
75 SAVE_STACK_POINTERS; \
76 cap->r.rCurrentTSO->what_next = (todo); \
77 cap->r.rRet = (retcode); \
82 allocate_NONUPD (int n_words
)
84 return allocate(stg_max(sizeofW(StgHeader
)+MIN_PAYLOAD_SIZE
, n_words
));
87 int rts_stop_next_breakpoint
= 0;
88 int rts_stop_on_exception
= 0;
92 /* Hacky stats, for tuning the interpreter ... */
93 int it_unknown_entries
[N_CLOSURE_TYPES
];
94 int it_total_unknown_entries
;
106 int it_oofreq
[27][27];
110 #define INTERP_TICK(n) (n)++
112 void interp_startup ( void )
115 it_retto_BCO
= it_retto_UPDATE
= it_retto_other
= 0;
116 it_total_entries
= it_total_unknown_entries
= 0;
117 for (i
= 0; i
< N_CLOSURE_TYPES
; i
++)
118 it_unknown_entries
[i
] = 0;
119 it_slides
= it_insns
= it_BCO_entries
= 0;
120 for (i
= 0; i
< 27; i
++) it_ofreq
[i
] = 0;
121 for (i
= 0; i
< 27; i
++)
122 for (j
= 0; j
< 27; j
++)
127 void interp_shutdown ( void )
129 int i
, j
, k
, o_max
, i_max
, j_max
;
130 debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
131 it_retto_BCO
+ it_retto_UPDATE
+ it_retto_other
,
132 it_retto_BCO
, it_retto_UPDATE
, it_retto_other
);
133 debugBelch("%d total entries, %d unknown entries \n",
134 it_total_entries
, it_total_unknown_entries
);
135 for (i
= 0; i
< N_CLOSURE_TYPES
; i
++) {
136 if (it_unknown_entries
[i
] == 0) continue;
137 debugBelch(" type %2d: unknown entries (%4.1f%%) == %d\n",
138 i
, 100.0 * ((double)it_unknown_entries
[i
]) /
139 ((double)it_total_unknown_entries
),
140 it_unknown_entries
[i
]);
142 debugBelch("%d insns, %d slides, %d BCO_entries\n",
143 it_insns
, it_slides
, it_BCO_entries
);
144 for (i
= 0; i
< 27; i
++)
145 debugBelch("opcode %2d got %d\n", i
, it_ofreq
[i
] );
147 for (k
= 1; k
< 20; k
++) {
150 for (i
= 0; i
< 27; i
++) {
151 for (j
= 0; j
< 27; j
++) {
152 if (it_oofreq
[i
][j
] > o_max
) {
153 o_max
= it_oofreq
[i
][j
];
154 i_max
= i
; j_max
= j
;
159 debugBelch("%d: count (%4.1f%%) %6d is %d then %d\n",
160 k
, ((double)o_max
) * 100.0 / ((double)it_insns
), o_max
,
162 it_oofreq
[i_max
][j_max
] = 0;
167 #else // !INTERP_STATS
169 #define INTERP_TICK(n) /* nothing */
173 static StgWord app_ptrs_itbl
[] = {
176 (W_
)&stg_ap_ppp_info
,
177 (W_
)&stg_ap_pppp_info
,
178 (W_
)&stg_ap_ppppp_info
,
179 (W_
)&stg_ap_pppppp_info
,
182 HsStablePtr rts_breakpoint_io_action
; // points to the IO action which is executed on a breakpoint
183 // it is set in main/GHC.hs:runStmt
186 interpretBCO (Capability
* cap
)
188 // Use of register here is primarily to make it clear to compilers
189 // that these entities are non-aliasable.
190 register StgPtr Sp
; // local state -- stack pointer
191 register StgPtr SpLim
; // local state -- stack lim pointer
192 register StgClosure
* obj
;
197 // ------------------------------------------------------------------------
200 // We have a closure to evaluate. Stack looks like:
204 // Sp | -------------------> closure
207 if (Sp
[0] == (W_
)&stg_enter_info
) {
212 // ------------------------------------------------------------------------
215 // We have a BCO application to perform. Stack looks like:
226 else if (Sp
[0] == (W_
)&stg_apply_interp_info
) {
227 obj
= (StgClosure
*)Sp
[1];
232 // ------------------------------------------------------------------------
235 // We have an unboxed value to return. See comment before
236 // do_return_unboxed, below.
239 goto do_return_unboxed
;
242 // Evaluate the object on top of the stack.
244 obj
= (StgClosure
*)Sp
[0]; Sp
++;
247 INTERP_TICK(it_total_evals
);
249 IF_DEBUG(interpreter
,
251 "\n---------------------------------------------------------------\n");
252 debugBelch("Evaluating: "); printObj(obj
);
253 debugBelch("Sp = %p\n", Sp
);
256 printStackChunk(Sp
,cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
);
260 IF_DEBUG(sanity
,checkStackChunk(Sp
, cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
));
262 switch ( get_itbl(obj
)->type
) {
267 case IND_OLDGEN_PERM
:
270 obj
= ((StgInd
*)obj
)->indirectee
;
281 case CONSTR_NOCAF_STATIC
:
295 ASSERT(((StgBCO
*)obj
)->arity
> 0);
299 case AP
: /* Copied from stg_AP_entry. */
308 if (Sp
- (words
+sizeofW(StgUpdateFrame
)) < SpLim
) {
311 Sp
[0] = (W_
)&stg_enter_info
;
312 RETURN_TO_SCHEDULER(ThreadInterpret
, StackOverflow
);
315 /* Ok; we're safe. Party on. Push an update frame. */
316 Sp
-= sizeofW(StgUpdateFrame
);
318 StgUpdateFrame
*__frame
;
319 __frame
= (StgUpdateFrame
*)Sp
;
320 SET_INFO(__frame
, (StgInfoTable
*)&stg_upd_frame_info
);
321 __frame
->updatee
= (StgClosure
*)(ap
);
324 /* Reload the stack */
326 for (i
=0; i
< words
; i
++) {
327 Sp
[i
] = (W_
)ap
->payload
[i
];
330 obj
= (StgClosure
*)ap
->fun
;
331 ASSERT(get_itbl(obj
)->type
== BCO
);
340 j
= get_itbl(obj
)->type
;
341 ASSERT(j
>= 0 && j
< N_CLOSURE_TYPES
);
342 it_unknown_entries
[j
]++;
343 it_total_unknown_entries
++;
347 // Can't handle this object; yield to scheduler
348 IF_DEBUG(interpreter
,
349 debugBelch("evaluating unknown closure -- yielding to sched\n");
354 Sp
[0] = (W_
)&stg_enter_info
;
355 RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC
, ThreadYielding
);
359 // ------------------------------------------------------------------------
360 // We now have an evaluated object (obj). The next thing to
361 // do is return it to the stack frame on top of the stack.
363 ASSERT(closure_HNF(obj
));
365 IF_DEBUG(interpreter
,
367 "\n---------------------------------------------------------------\n");
368 debugBelch("Returning: "); printObj(obj
);
369 debugBelch("Sp = %p\n", Sp
);
371 printStackChunk(Sp
,cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
);
375 IF_DEBUG(sanity
,checkStackChunk(Sp
, cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
));
377 switch (get_itbl((StgClosure
*)Sp
)->type
) {
380 const StgInfoTable
*info
;
382 // NOTE: not using get_itbl().
383 info
= ((StgClosure
*)Sp
)->header
.info
;
384 if (info
== (StgInfoTable
*)&stg_ap_v_info
) {
385 n
= 1; m
= 0; goto do_apply
;
387 if (info
== (StgInfoTable
*)&stg_ap_f_info
) {
388 n
= 1; m
= 1; goto do_apply
;
390 if (info
== (StgInfoTable
*)&stg_ap_d_info
) {
391 n
= 1; m
= sizeofW(StgDouble
); goto do_apply
;
393 if (info
== (StgInfoTable
*)&stg_ap_l_info
) {
394 n
= 1; m
= sizeofW(StgInt64
); goto do_apply
;
396 if (info
== (StgInfoTable
*)&stg_ap_n_info
) {
397 n
= 1; m
= 1; goto do_apply
;
399 if (info
== (StgInfoTable
*)&stg_ap_p_info
) {
400 n
= 1; m
= 1; goto do_apply
;
402 if (info
== (StgInfoTable
*)&stg_ap_pp_info
) {
403 n
= 2; m
= 2; goto do_apply
;
405 if (info
== (StgInfoTable
*)&stg_ap_ppp_info
) {
406 n
= 3; m
= 3; goto do_apply
;
408 if (info
== (StgInfoTable
*)&stg_ap_pppp_info
) {
409 n
= 4; m
= 4; goto do_apply
;
411 if (info
== (StgInfoTable
*)&stg_ap_ppppp_info
) {
412 n
= 5; m
= 5; goto do_apply
;
414 if (info
== (StgInfoTable
*)&stg_ap_pppppp_info
) {
415 n
= 6; m
= 6; goto do_apply
;
417 goto do_return_unrecognised
;
421 // Returning to an update frame: do the update, pop the update
422 // frame, and continue with the next stack frame.
423 INTERP_TICK(it_retto_UPDATE
);
424 UPD_IND(((StgUpdateFrame
*)Sp
)->updatee
, obj
);
425 Sp
+= sizeofW(StgUpdateFrame
);
429 // Returning to an interpreted continuation: put the object on
430 // the stack, and start executing the BCO.
431 INTERP_TICK(it_retto_BCO
);
434 obj
= (StgClosure
*)Sp
[2];
435 ASSERT(get_itbl(obj
)->type
== BCO
);
439 do_return_unrecognised
:
441 // Can't handle this return address; yield to scheduler
442 INTERP_TICK(it_retto_other
);
443 IF_DEBUG(interpreter
,
444 debugBelch("returning to unknown frame -- yielding to sched\n");
445 printStackChunk(Sp
,cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
);
449 Sp
[0] = (W_
)&stg_enter_info
;
450 RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC
, ThreadYielding
);
454 // -------------------------------------------------------------------------
455 // Returning an unboxed value. The stack looks like this:
472 // where XXXX_info is one of the stg_gc_unbx_r1_info family.
474 // We're only interested in the case when the real return address
475 // is a BCO; otherwise we'll return to the scheduler.
481 ASSERT( Sp
[0] == (W_
)&stg_gc_unbx_r1_info
482 || Sp
[0] == (W_
)&stg_gc_unpt_r1_info
483 || Sp
[0] == (W_
)&stg_gc_f1_info
484 || Sp
[0] == (W_
)&stg_gc_d1_info
485 || Sp
[0] == (W_
)&stg_gc_l1_info
486 || Sp
[0] == (W_
)&stg_gc_void_info
// VoidRep
489 // get the offset of the stg_ctoi_ret_XXX itbl
490 offset
= stack_frame_sizeW((StgClosure
*)Sp
);
492 switch (get_itbl((StgClosure
*)Sp
+offset
)->type
) {
495 // Returning to an interpreted continuation: put the object on
496 // the stack, and start executing the BCO.
497 INTERP_TICK(it_retto_BCO
);
498 obj
= (StgClosure
*)Sp
[offset
+1];
499 ASSERT(get_itbl(obj
)->type
== BCO
);
500 goto run_BCO_return_unboxed
;
504 // Can't handle this return address; yield to scheduler
505 INTERP_TICK(it_retto_other
);
506 IF_DEBUG(interpreter
,
507 debugBelch("returning to unknown frame -- yielding to sched\n");
508 printStackChunk(Sp
,cap
->r
.rCurrentTSO
->stack
+cap
->r
.rCurrentTSO
->stack_size
);
510 RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC
, ThreadYielding
);
517 // -------------------------------------------------------------------------
521 // we have a function to apply (obj), and n arguments taking up m
522 // words on the stack. The info table (stg_ap_pp_info or whatever)
523 // is on top of the arguments on the stack.
525 switch (get_itbl(obj
)->type
) {
533 // we only cope with PAPs whose function is a BCO
534 if (get_itbl(pap
->fun
)->type
!= BCO
) {
535 goto defer_apply_to_sched
;
542 // n must be greater than 1, and the only kinds of
543 // application we support with more than one argument
544 // are all pointers...
546 // Shuffle the args for this function down, and put
547 // the appropriate info table in the gap.
548 for (i
= 0; i
< arity
; i
++) {
549 Sp
[(int)i
-1] = Sp
[i
];
550 // ^^^^^ careful, i-1 might be negative, but i in unsigned
552 Sp
[arity
-1] = app_ptrs_itbl
[n
-arity
-1];
554 // unpack the PAP's arguments onto the stack
556 for (i
= 0; i
< pap
->n_args
; i
++) {
557 Sp
[i
] = (W_
)pap
->payload
[i
];
562 else if (arity
== n
) {
564 for (i
= 0; i
< pap
->n_args
; i
++) {
565 Sp
[i
] = (W_
)pap
->payload
[i
];
570 else /* arity > n */ {
571 // build a new PAP and return it.
573 new_pap
= (StgPAP
*)allocate(PAP_sizeW(pap
->n_args
+ m
));
574 SET_HDR(new_pap
,&stg_PAP_info
,CCCS
);
575 new_pap
->arity
= pap
->arity
- n
;
576 new_pap
->n_args
= pap
->n_args
+ m
;
577 new_pap
->fun
= pap
->fun
;
578 for (i
= 0; i
< pap
->n_args
; i
++) {
579 new_pap
->payload
[i
] = pap
->payload
[i
];
581 for (i
= 0; i
< m
; i
++) {
582 new_pap
->payload
[pap
->n_args
+ i
] = (StgClosure
*)Sp
[i
];
584 obj
= (StgClosure
*)new_pap
;
594 arity
= ((StgBCO
*)obj
)->arity
;
597 // n must be greater than 1, and the only kinds of
598 // application we support with more than one argument
599 // are all pointers...
601 // Shuffle the args for this function down, and put
602 // the appropriate info table in the gap.
603 for (i
= 0; i
< arity
; i
++) {
604 Sp
[(int)i
-1] = Sp
[i
];
605 // ^^^^^ careful, i-1 might be negative, but i in unsigned
607 Sp
[arity
-1] = app_ptrs_itbl
[n
-arity
-1];
611 else if (arity
== n
) {
614 else /* arity > n */ {
615 // build a PAP and return it.
618 pap
= (StgPAP
*)allocate(PAP_sizeW(m
));
619 SET_HDR(pap
, &stg_PAP_info
,CCCS
);
620 pap
->arity
= arity
- n
;
623 for (i
= 0; i
< m
; i
++) {
624 pap
->payload
[i
] = (StgClosure
*)Sp
[i
];
626 obj
= (StgClosure
*)pap
;
632 // No point in us applying machine-code functions
634 defer_apply_to_sched
:
637 Sp
[0] = (W_
)&stg_enter_info
;
638 RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC
, ThreadYielding
);
641 // ------------------------------------------------------------------------
642 // Ok, we now have a bco (obj), and its arguments are all on the
643 // stack. We can start executing the byte codes.
645 // The stack is in one of two states. First, if this BCO is a
655 // Second, if this BCO is a continuation:
670 // where retval is the value being returned to this continuation.
671 // In the event of a stack check, heap check, or context switch,
672 // we need to leave the stack in a sane state so the garbage
673 // collector can find all the pointers.
675 // (1) BCO is a function: the BCO's bitmap describes the
676 // pointerhood of the arguments.
678 // (2) BCO is a continuation: BCO's bitmap describes the
679 // pointerhood of the free variables.
681 // Sadly we have three different kinds of stack/heap/cswitch check
687 if (doYouWantToGC()) {
688 Sp
--; Sp
[0] = (W_
)&stg_enter_info
;
689 RETURN_TO_SCHEDULER(ThreadInterpret
, HeapOverflow
);
691 // Stack checks aren't necessary at return points, the stack use
692 // is aggregated into the enclosing function entry point.
696 run_BCO_return_unboxed
:
698 if (doYouWantToGC()) {
699 RETURN_TO_SCHEDULER(ThreadInterpret
, HeapOverflow
);
701 // Stack checks aren't necessary at return points, the stack use
702 // is aggregated into the enclosing function entry point.
710 Sp
[0] = (W_
)&stg_apply_interp_info
;
711 checkStackChunk(Sp
,SpLim
);
716 if (doYouWantToGC()) {
719 Sp
[0] = (W_
)&stg_apply_interp_info
; // placeholder, really
720 RETURN_TO_SCHEDULER(ThreadInterpret
, HeapOverflow
);
724 if (Sp
- INTERP_STACK_CHECK_THRESH
< SpLim
) {
727 Sp
[0] = (W_
)&stg_apply_interp_info
; // placeholder, really
728 RETURN_TO_SCHEDULER(ThreadInterpret
, StackOverflow
);
733 // Now, actually interpret the BCO... (no returning to the
734 // scheduler again until the stack is in an orderly state).
736 INTERP_TICK(it_BCO_entries
);
738 register int bciPtr
= 1; /* instruction pointer */
739 register StgWord16 bci
;
740 register StgBCO
* bco
= (StgBCO
*)obj
;
741 register StgWord16
* instrs
= (StgWord16
*)(bco
->instrs
->payload
);
742 register StgWord
* literals
= (StgWord
*)(&bco
->literals
->payload
[0]);
743 register StgPtr
* ptrs
= (StgPtr
*)(&bco
->ptrs
->payload
[0]);
746 it_lastopc
= 0; /* no opcode */
750 ASSERT(bciPtr
<= instrs
[0]);
751 IF_DEBUG(interpreter
,
752 //if (do_print_stack) {
753 //debugBelch("\n-- BEGIN stack\n");
754 //printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
755 //debugBelch("-- END stack\n\n");
757 debugBelch("Sp = %p pc = %d ", Sp
, bciPtr
);
758 disInstr(bco
,bciPtr
);
761 for (i
= 8; i
>= 0; i
--) {
762 debugBelch("%d %p\n", i
, (StgPtr
)(*(Sp
+i
)));
766 //if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
770 INTERP_TICK(it_insns
);
773 ASSERT( (int)instrs
[bciPtr
] >= 0 && (int)instrs
[bciPtr
] < 27 );
774 it_ofreq
[ (int)instrs
[bciPtr
] ] ++;
775 it_oofreq
[ it_lastopc
][ (int)instrs
[bciPtr
] ] ++;
776 it_lastopc
= (int)instrs
[bciPtr
];
780 /* We use the high 8 bits for flags, only the highest of which is
781 * currently allocated */
782 ASSERT((bci
& 0xFF00) == (bci
& 0x8000));
784 switch (bci
& 0xFF) {
786 /* check for a breakpoint on the beginning of a let binding */
789 int arg1_brk_array
, arg2_array_index
, arg3_freeVars
;
790 StgArrWords
*breakPoints
;
791 int returning_from_break
; // are we resuming execution from a breakpoint?
792 // if yes, then don't break this time around
793 StgClosure
*ioAction
; // the io action to run at a breakpoint
795 StgAP_STACK
*new_aps
; // a closure to save the top stack frame on the heap
799 arg1_brk_array
= BCO_NEXT
; // 1st arg of break instruction
800 arg2_array_index
= BCO_NEXT
; // 2nd arg of break instruction
801 arg3_freeVars
= BCO_NEXT
; // 3rd arg of break instruction
803 // check if we are returning from a breakpoint - this info
804 // is stored in the flags field of the current TSO
805 returning_from_break
= cap
->r
.rCurrentTSO
->flags
& TSO_STOPPED_ON_BREAKPOINT
;
807 // if we are returning from a break then skip this section
808 // and continue executing
809 if (!returning_from_break
)
811 breakPoints
= (StgArrWords
*) BCO_PTR(arg1_brk_array
);
813 // stop the current thread if either the
814 // "rts_stop_next_breakpoint" flag is true OR if the
815 // breakpoint flag for this particular expression is
817 if (rts_stop_next_breakpoint
== rtsTrue
||
818 breakPoints
->payload
[arg2_array_index
] == rtsTrue
)
820 // make sure we don't automatically stop at the
822 rts_stop_next_breakpoint
= rtsFalse
;
824 // allocate memory for a new AP_STACK, enough to
825 // store the top stack frame plus an
826 // stg_apply_interp_info pointer and a pointer to
828 size_words
= BCO_BITMAP_SIZE(obj
) + 2;
829 new_aps
= (StgAP_STACK
*) allocate (AP_STACK_sizeW(size_words
));
830 SET_HDR(new_aps
,&stg_AP_STACK_info
,CCS_SYSTEM
);
831 new_aps
->size
= size_words
;
832 new_aps
->fun
= &stg_dummy_ret_closure
;
834 // fill in the payload of the AP_STACK
835 new_aps
->payload
[0] = (StgClosure
*)&stg_apply_interp_info
;
836 new_aps
->payload
[1] = (StgClosure
*)obj
;
838 // copy the contents of the top stack frame into the AP_STACK
839 for (i
= 2; i
< size_words
; i
++)
841 new_aps
->payload
[i
] = (StgClosure
*)Sp
[i
-2];
844 // prepare the stack so that we can call the
845 // rts_breakpoint_io_action and ensure that the stack is
846 // in a reasonable state for the GC and so that
847 // execution of this BCO can continue when we resume
848 ioAction
= (StgClosure
*) deRefStablePtr (rts_breakpoint_io_action
);
851 Sp
[6] = (W_
)&stg_apply_interp_info
;
852 Sp
[5] = (W_
)new_aps
; // the AP_STACK
853 Sp
[4] = (W_
)BCO_PTR(arg3_freeVars
); // the info about local vars of the breakpoint
854 Sp
[3] = (W_
)False_closure
; // True <=> a breakpoint
855 Sp
[2] = (W_
)&stg_ap_pppv_info
;
856 Sp
[1] = (W_
)ioAction
; // apply the IO action to its two arguments above
857 Sp
[0] = (W_
)&stg_enter_info
; // get ready to run the IO action
859 // set the flag in the TSO to say that we are now
860 // stopping at a breakpoint so that when we resume
861 // we don't stop on the same breakpoint that we
862 // already stopped at just now
863 cap
->r
.rCurrentTSO
->flags
|= TSO_STOPPED_ON_BREAKPOINT
;
865 // stop this thread and return to the scheduler -
866 // eventually we will come back and the IO action on
867 // the top of the stack will be executed
868 RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC
, ThreadYielding
);
871 // record that this thread is not stopped at a breakpoint anymore
872 cap
->r
.rCurrentTSO
->flags
&= ~TSO_STOPPED_ON_BREAKPOINT
;
874 // continue normal execution of the byte code instructions
879 // Explicit stack check at the beginning of a function
880 // *only* (stack checks in case alternatives are
881 // propagated to the enclosing function).
882 StgWord stk_words_reqd
= BCO_GET_LARGE_ARG
+ 1;
883 if (Sp
- stk_words_reqd
< SpLim
) {
886 Sp
[0] = (W_
)&stg_apply_interp_info
;
887 RETURN_TO_SCHEDULER(ThreadInterpret
, StackOverflow
);
922 Sp
[-1] = BCO_PTR(o1
);
927 case bci_PUSH_ALTS
: {
928 int o_bco
= BCO_NEXT
;
929 Sp
[-2] = (W_
)&stg_ctoi_R1p_info
;
930 Sp
[-1] = BCO_PTR(o_bco
);
935 case bci_PUSH_ALTS_P
: {
936 int o_bco
= BCO_NEXT
;
937 Sp
[-2] = (W_
)&stg_ctoi_R1unpt_info
;
938 Sp
[-1] = BCO_PTR(o_bco
);
943 case bci_PUSH_ALTS_N
: {
944 int o_bco
= BCO_NEXT
;
945 Sp
[-2] = (W_
)&stg_ctoi_R1n_info
;
946 Sp
[-1] = BCO_PTR(o_bco
);
951 case bci_PUSH_ALTS_F
: {
952 int o_bco
= BCO_NEXT
;
953 Sp
[-2] = (W_
)&stg_ctoi_F1_info
;
954 Sp
[-1] = BCO_PTR(o_bco
);
959 case bci_PUSH_ALTS_D
: {
960 int o_bco
= BCO_NEXT
;
961 Sp
[-2] = (W_
)&stg_ctoi_D1_info
;
962 Sp
[-1] = BCO_PTR(o_bco
);
967 case bci_PUSH_ALTS_L
: {
968 int o_bco
= BCO_NEXT
;
969 Sp
[-2] = (W_
)&stg_ctoi_L1_info
;
970 Sp
[-1] = BCO_PTR(o_bco
);
975 case bci_PUSH_ALTS_V
: {
976 int o_bco
= BCO_NEXT
;
977 Sp
[-2] = (W_
)&stg_ctoi_V_info
;
978 Sp
[-1] = BCO_PTR(o_bco
);
983 case bci_PUSH_APPLY_N
:
984 Sp
--; Sp
[0] = (W_
)&stg_ap_n_info
;
986 case bci_PUSH_APPLY_V
:
987 Sp
--; Sp
[0] = (W_
)&stg_ap_v_info
;
989 case bci_PUSH_APPLY_F
:
990 Sp
--; Sp
[0] = (W_
)&stg_ap_f_info
;
992 case bci_PUSH_APPLY_D
:
993 Sp
--; Sp
[0] = (W_
)&stg_ap_d_info
;
995 case bci_PUSH_APPLY_L
:
996 Sp
--; Sp
[0] = (W_
)&stg_ap_l_info
;
998 case bci_PUSH_APPLY_P
:
999 Sp
--; Sp
[0] = (W_
)&stg_ap_p_info
;
1001 case bci_PUSH_APPLY_PP
:
1002 Sp
--; Sp
[0] = (W_
)&stg_ap_pp_info
;
1004 case bci_PUSH_APPLY_PPP
:
1005 Sp
--; Sp
[0] = (W_
)&stg_ap_ppp_info
;
1007 case bci_PUSH_APPLY_PPPP
:
1008 Sp
--; Sp
[0] = (W_
)&stg_ap_pppp_info
;
1010 case bci_PUSH_APPLY_PPPPP
:
1011 Sp
--; Sp
[0] = (W_
)&stg_ap_ppppp_info
;
1013 case bci_PUSH_APPLY_PPPPPP
:
1014 Sp
--; Sp
[0] = (W_
)&stg_ap_pppppp_info
;
1017 case bci_PUSH_UBX
: {
1019 int o_lits
= BCO_NEXT
;
1020 int n_words
= BCO_NEXT
;
1022 for (i
= 0; i
< n_words
; i
++) {
1023 Sp
[i
] = (W_
)BCO_LIT(o_lits
+i
);
1031 /* a_1, .. a_n, b_1, .. b_by, s => a_1, .. a_n, s */
1036 INTERP_TICK(it_slides
);
1040 case bci_ALLOC_AP
: {
1042 int n_payload
= BCO_NEXT
;
1043 ap
= (StgAP
*)allocate(AP_sizeW(n_payload
));
1045 ap
->n_args
= n_payload
;
1046 SET_HDR(ap
, &stg_AP_info
, CCS_SYSTEM
/*ToDo*/)
1051 case bci_ALLOC_PAP
: {
1053 int arity
= BCO_NEXT
;
1054 int n_payload
= BCO_NEXT
;
1055 pap
= (StgPAP
*)allocate(PAP_sizeW(n_payload
));
1057 pap
->n_args
= n_payload
;
1059 SET_HDR(pap
, &stg_PAP_info
, CCS_SYSTEM
/*ToDo*/)
1066 int stkoff
= BCO_NEXT
;
1067 int n_payload
= BCO_NEXT
;
1068 StgAP
* ap
= (StgAP
*)Sp
[stkoff
];
1069 ASSERT((int)ap
->n_args
== n_payload
);
1070 ap
->fun
= (StgClosure
*)Sp
[0];
1072 // The function should be a BCO, and its bitmap should
1073 // cover the payload of the AP correctly.
1074 ASSERT(get_itbl(ap
->fun
)->type
== BCO
1075 && BCO_BITMAP_SIZE(ap
->fun
) == ap
->n_args
);
1077 for (i
= 0; i
< n_payload
; i
++)
1078 ap
->payload
[i
] = (StgClosure
*)Sp
[i
+1];
1080 IF_DEBUG(interpreter
,
1081 debugBelch("\tBuilt ");
1082 printObj((StgClosure
*)ap
);
1089 int stkoff
= BCO_NEXT
;
1090 int n_payload
= BCO_NEXT
;
1091 StgPAP
* pap
= (StgPAP
*)Sp
[stkoff
];
1092 ASSERT((int)pap
->n_args
== n_payload
);
1093 pap
->fun
= (StgClosure
*)Sp
[0];
1095 // The function should be a BCO
1096 ASSERT(get_itbl(pap
->fun
)->type
== BCO
);
1098 for (i
= 0; i
< n_payload
; i
++)
1099 pap
->payload
[i
] = (StgClosure
*)Sp
[i
+1];
1101 IF_DEBUG(interpreter
,
1102 debugBelch("\tBuilt ");
1103 printObj((StgClosure
*)pap
);
1109 /* Unpack N ptr words from t.o.s constructor */
1111 int n_words
= BCO_NEXT
;
1112 StgClosure
* con
= (StgClosure
*)Sp
[0];
1114 for (i
= 0; i
< n_words
; i
++) {
1115 Sp
[i
] = (W_
)con
->payload
[i
];
1122 int o_itbl
= BCO_NEXT
;
1123 int n_words
= BCO_NEXT
;
1124 StgInfoTable
* itbl
= INFO_PTR_TO_STRUCT(BCO_LIT(o_itbl
));
1125 int request
= CONSTR_sizeW( itbl
->layout
.payload
.ptrs
,
1126 itbl
->layout
.payload
.nptrs
);
1127 StgClosure
* con
= (StgClosure
*)allocate_NONUPD(request
);
1128 ASSERT( itbl
->layout
.payload
.ptrs
+ itbl
->layout
.payload
.nptrs
> 0);
1129 SET_HDR(con
, (StgInfoTable
*)BCO_LIT(o_itbl
), CCS_SYSTEM
/*ToDo*/);
1130 for (i
= 0; i
< n_words
; i
++) {
1131 con
->payload
[i
] = (StgClosure
*)Sp
[i
];
1136 IF_DEBUG(interpreter
,
1137 debugBelch("\tBuilt ");
1138 printObj((StgClosure
*)con
);
1143 case bci_TESTLT_P
: {
1144 unsigned int discr
= BCO_NEXT
;
1145 int failto
= BCO_NEXT
;
1146 StgClosure
* con
= (StgClosure
*)Sp
[0];
1147 if (GET_TAG(con
) >= discr
) {
1153 case bci_TESTEQ_P
: {
1154 unsigned int discr
= BCO_NEXT
;
1155 int failto
= BCO_NEXT
;
1156 StgClosure
* con
= (StgClosure
*)Sp
[0];
1157 if (GET_TAG(con
) != discr
) {
1163 case bci_TESTLT_I
: {
1164 // There should be an Int at Sp[1], and an info table at Sp[0].
1165 int discr
= BCO_NEXT
;
1166 int failto
= BCO_NEXT
;
1167 I_ stackInt
= (I_
)Sp
[1];
1168 if (stackInt
>= (I_
)BCO_LIT(discr
))
1173 case bci_TESTEQ_I
: {
1174 // There should be an Int at Sp[1], and an info table at Sp[0].
1175 int discr
= BCO_NEXT
;
1176 int failto
= BCO_NEXT
;
1177 I_ stackInt
= (I_
)Sp
[1];
1178 if (stackInt
!= (I_
)BCO_LIT(discr
)) {
1184 case bci_TESTLT_D
: {
1185 // There should be a Double at Sp[1], and an info table at Sp[0].
1186 int discr
= BCO_NEXT
;
1187 int failto
= BCO_NEXT
;
1188 StgDouble stackDbl
, discrDbl
;
1189 stackDbl
= PK_DBL( & Sp
[1] );
1190 discrDbl
= PK_DBL( & BCO_LIT(discr
) );
1191 if (stackDbl
>= discrDbl
) {
1197 case bci_TESTEQ_D
: {
1198 // There should be a Double at Sp[1], and an info table at Sp[0].
1199 int discr
= BCO_NEXT
;
1200 int failto
= BCO_NEXT
;
1201 StgDouble stackDbl
, discrDbl
;
1202 stackDbl
= PK_DBL( & Sp
[1] );
1203 discrDbl
= PK_DBL( & BCO_LIT(discr
) );
1204 if (stackDbl
!= discrDbl
) {
1210 case bci_TESTLT_F
: {
1211 // There should be a Float at Sp[1], and an info table at Sp[0].
1212 int discr
= BCO_NEXT
;
1213 int failto
= BCO_NEXT
;
1214 StgFloat stackFlt
, discrFlt
;
1215 stackFlt
= PK_FLT( & Sp
[1] );
1216 discrFlt
= PK_FLT( & BCO_LIT(discr
) );
1217 if (stackFlt
>= discrFlt
) {
1223 case bci_TESTEQ_F
: {
1224 // There should be a Float at Sp[1], and an info table at Sp[0].
1225 int discr
= BCO_NEXT
;
1226 int failto
= BCO_NEXT
;
1227 StgFloat stackFlt
, discrFlt
;
1228 stackFlt
= PK_FLT( & Sp
[1] );
1229 discrFlt
= PK_FLT( & BCO_LIT(discr
) );
1230 if (stackFlt
!= discrFlt
) {
1236 // Control-flow ish things
1238 // Context-switch check. We put it here to ensure that
1239 // the interpreter has done at least *some* work before
1240 // context switching: sometimes the scheduler can invoke
1241 // the interpreter with context_switch == 1, particularly
1242 // if the -C0 flag has been given on the cmd line.
1243 if (context_switch
) {
1244 Sp
--; Sp
[0] = (W_
)&stg_enter_info
;
1245 RETURN_TO_SCHEDULER(ThreadInterpret
, ThreadYielding
);
1250 obj
= (StgClosure
*)Sp
[0];
1256 Sp
[0] = (W_
)&stg_gc_unpt_r1_info
;
1257 goto do_return_unboxed
;
1260 Sp
[0] = (W_
)&stg_gc_unbx_r1_info
;
1261 goto do_return_unboxed
;
1264 Sp
[0] = (W_
)&stg_gc_f1_info
;
1265 goto do_return_unboxed
;
1268 Sp
[0] = (W_
)&stg_gc_d1_info
;
1269 goto do_return_unboxed
;
1272 Sp
[0] = (W_
)&stg_gc_l1_info
;
1273 goto do_return_unboxed
;
1276 Sp
[0] = (W_
)&stg_gc_void_info
;
1277 goto do_return_unboxed
;
1280 int stkoff
= BCO_NEXT
;
1281 signed short n
= (signed short)(BCO_NEXT
);
1282 Sp
[stkoff
] += (W_
)n
;
1288 int stk_offset
= BCO_NEXT
;
1289 int o_itbl
= BCO_NEXT
;
1290 void(*marshall_fn
)(void*) = (void (*)(void*))BCO_LIT(o_itbl
);
1292 RET_DYN_BITMAP_SIZE
+ RET_DYN_NONPTR_REGS_SIZE
1293 + sizeofW(StgRetDyn
);
1297 // Arguments on the TSO stack are not good, because garbage
1298 // collection might move the TSO as soon as we call
1299 // suspendThread below.
1301 W_ arguments
[stk_offset
];
1303 memcpy(arguments
, Sp
, sizeof(W_
) * stk_offset
);
1306 // Restore the Haskell thread's current value of errno
1307 errno
= cap
->r
.rCurrentTSO
->saved_errno
;
1309 // There are a bunch of non-ptr words on the stack (the
1310 // ccall args, the ccall fun address and space for the
1311 // result), which we need to cover with an info table
1312 // since we might GC during this call.
1314 // We know how many (non-ptr) words there are before the
1315 // next valid stack frame: it is the stk_offset arg to the
1316 // CCALL instruction. So we build a RET_DYN stack frame
1317 // on the stack frame to describe this chunk of stack.
1320 ((StgRetDyn
*)Sp
)->liveness
= NO_PTRS
| N_NONPTRS(stk_offset
);
1321 ((StgRetDyn
*)Sp
)->info
= (StgInfoTable
*)&stg_gc_gen_info
;
1323 SAVE_STACK_POINTERS
;
1324 tok
= suspendThread(&cap
->r
);
1326 #ifndef THREADED_RTS
1328 // suspendThread might have shifted the stack
1329 // around (stack squeezing), so we have to grab the real
1330 // Sp out of the TSO to find the ccall args again.
1332 marshall_fn ( (void*)(cap
->r
.rCurrentTSO
->sp
+ ret_dyn_size
) );
1335 // We already made a copy of the arguments above.
1337 marshall_fn ( arguments
);
1340 // And restart the thread again, popping the RET_DYN frame.
1341 cap
= (Capability
*)((void *)((unsigned char*)resumeThread(tok
) - sizeof(StgFunTable
)));
1342 LOAD_STACK_POINTERS
;
1345 // Save the Haskell thread's current value of errno
1346 cap
->r
.rCurrentTSO
->saved_errno
= errno
;
1350 // Copy the "arguments", which might include a return value,
1351 // back to the TSO stack. It would of course be enough to
1352 // just copy the return value, but we don't know the offset.
1353 memcpy(Sp
, arguments
, sizeof(W_
) * stk_offset
);
1360 /* BCO_NEXT modifies bciPtr, so be conservative. */
1361 int nextpc
= BCO_NEXT
;
1367 barf("interpretBCO: hit a CASEFAIL");
1371 barf("interpretBCO: unknown or unimplemented opcode %d",
1374 } /* switch on opcode */
1378 barf("interpretBCO: fell off end of the interpreter");