author ross Thu, 20 Jan 2005 19:00:28 +0000 (19:00 +0000) committer ross Thu, 20 Jan 2005 19:00:28 +0000 (19:00 +0000)
cross-references and minor doc fixes

 Data/IntMap.hs patch | blob | history Data/IntSet.hs patch | blob | history Data/Map.hs patch | blob | history Data/Set.hs patch | blob | history

index 9056628..b301dbd 100644 (file)
@@ -188,7 +188,7 @@ shiftRL x i   = shiftR x i
Operators
--------------------------------------------------------------------}

--- | /O(min(n,W))/. Find the value of a key. Calls @error@ when the element can not be found.
+-- | /O(min(n,W))/. Find the value of a key. Calls 'error' when the element can not be found.

(!) :: IntMap a -> Key -> a
m ! k    = find' k m
@@ -272,8 +272,9 @@ find' k m
Just x  -> x

--- | /O(min(n,W))/. The expression @(findWithDefault def k map)@ returns the value of key @k@ or returns @def@ when
--- the key is not an element of the map.
+-- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@
+-- returns the value of key @k@ or returns @def@ when the key is not an
+-- element of the map.
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k m
= case lookup k m of
@@ -332,9 +333,9 @@ insertWithKey f k x t
Nil -> Tip k x

--- | /O(min(n,W))/. The expression (@insertLookupWithKey f k x map@) is a pair where
--- the first element is equal to (@lookup k map@) and the second element
--- equal to (@insertWithKey f k x map@).
+-- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@)
+-- is a pair where the first element is equal to (@'lookup' k map@)
+-- and the second element equal to (@'insertWithKey' f k x map@).
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f k x t
= case t of
@@ -378,16 +379,16 @@ adjustWithKey ::  (Key -> a -> a) -> Key -> IntMap a -> IntMap a
= updateWithKey (\k x -> Just (f k x)) k m

--- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
--- at @k@ (if it is in the map). If (@f x@) is @Nothing@, the element is
--- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
+-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
+-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
+-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
update ::  (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f k m
= updateWithKey (\k x -> f x) k m

--- | /O(min(n,W))/. The expression (@update f k map@) updates the value @x@
--- at @k@ (if it is in the map). If (@f k x@) is @Nothing@, the element is
--- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
+-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
+-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
+-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
updateWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t
= case t of
@@ -512,8 +513,8 @@ differenceWith f m1 m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
--- If it returns @Nothing@, the element is discarded (proper set difference). If
--- it returns (@Just y@), the element is updated with a new value @y@.
+-- If it returns 'Nothing', the element is discarded (proper set difference).
+-- If it returns (@'Just' y@), the element is updated with a new value @y@.
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey f t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2  = difference1
@@ -607,22 +608,22 @@ intersectionWithKey f t Nil = Nil
Submap
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
--- Defined as (@isProperSubmapOf = isProperSubmapOfBy (==)@).
+-- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@).
isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isProperSubmapOf m1 m2
= isProperSubmapOfBy (==) m1 m2

{- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
- The expression (@isProperSubmapOfBy f m1 m2@) returns @True@ when
+ The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when
@m1@ and @m2@ are not equal,
- all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
+ all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
applied to their respective values. For example, the following
- expressions are all @True@.
+ expressions are all 'True':

> isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

- But the following are all @False@:
+ But the following are all 'False':

> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
@@ -660,22 +661,23 @@ submapCmp pred (Tip k x) t
submapCmp pred Nil Nil = EQ
submapCmp pred Nil t   = LT

--- | /O(n+m)/. Is this a submap? Defined as (@isSubmapOf = isSubmapOfBy (==)@).
+-- | /O(n+m)/. Is this a submap?
+-- Defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@).
isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isSubmapOf m1 m2
= isSubmapOfBy (==) m1 m2

{- | /O(n+m)/.
- The expression (@isSubmapOfBy f m1 m2@) returns @True@ if
- all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
+ The expression (@'isSubmapOfBy' f m1 m2@) returns 'True' if
+ all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
applied to their respective values. For example, the following
- expressions are all @True@.
+ expressions are all 'True':

> isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

- But the following are all @False@:
+ But the following are all 'False':

> isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])
> isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
@@ -710,19 +712,19 @@ mapWithKey f t
Tip k x     -> Tip k (f k x)
Nil         -> Nil

--- | /O(n)/. The function @mapAccum@ threads an accumulating
+-- | /O(n)/. The function @'mapAccum'@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f a m
= mapAccumWithKey (\a k x -> f a x) a m

--- | /O(n)/. The function @mapAccumWithKey@ threads an accumulating
+-- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating
-- argument through the map in an unspecified order.
mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
= mapAccumL f a t

--- | /O(n)/. The function @mapAccumL@ threads an accumulating
+-- | /O(n)/. The function @'mapAccumL'@ threads an accumulating
-- argument through the map in pre-order.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f a t
@@ -734,7 +736,7 @@ mapAccumL f a t
Nil         -> (a,Nil)

--- | /O(n)/. The function @mapAccumR@ threads an accumulating
+-- | /O(n)/. The function @'mapAccumR'@ threads an accumulating
-- argument throught the map in post-order.
mapAccumR :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumR f a t
@@ -787,7 +789,7 @@ partitionWithKey pred t
Nil -> (Nil,Nil)

--- | /O(log n)/. The expression (@split k map@) is a pair @(map1,map2)@
+-- | /O(log n)/. The expression (@'split' k map@) is a pair @(map1,map2)@
-- where all keys in @map1@ are lower than @k@ and all keys in
-- @map2@ larger than @k@. Any key equal to @k@ is found in neither @map1@ nor @map2@.
split :: Key -> IntMap a -> (IntMap a,IntMap a)
@@ -1006,10 +1008,10 @@ showTree s
= showTreeWith True False s

-{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
+{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows
the tree that implements the map. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
- @wide@ is true, an extra wide version is shown.
'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
+ @wide@ is 'True', an extra wide version is shown.
-}
showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String
showTreeWith hang wide t
index d8e44ab..f86f40b 100644 (file)
@@ -405,7 +405,7 @@ subsetCmp Nil Nil = EQ
subsetCmp Nil t   = LT

-- | /O(n+m)/. Is this a subset?
--- @(s1 `isSubsetOf` s2)@ tells whether s1 is a subset of s2.
+-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.

isSubsetOf :: IntSet -> IntSet -> Bool
isSubsetOf t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
@@ -446,7 +446,7 @@ partition pred t
Nil -> (Nil,Nil)

--- | /O(log n)/. The expression (@split x set@) is a pair @(set1,set2)@
+-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where all elements in @set1@ are lower than @x@ and all elements in
-- @set2@ larger than @x@.
--
@@ -482,7 +482,7 @@ splitMember x t
----------------------------------------------------------------------}

-- | /O(n*min(n,W))/.
--- @map f s@ is the set obtained by applying @f@ to each element of @s@.
+-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@
@@ -620,10 +620,10 @@ showTree s
= showTreeWith True False s

-{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
+{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows
the tree that implements the set. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
- @wide@ is true, an extra wide version is shown.
'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
+ @wide@ is 'True', an extra wide version is shown.
-}
showTreeWith :: Bool -> Bool -> IntSet -> String
showTreeWith hang wide t
index f8e7ccb..74a57c0 100644 (file)
@@ -171,7 +171,7 @@ import Data.Generics.Instances
--------------------------------------------------------------------}
infixl 9 !,\\ --

--- | /O(log n)/. Find the value of a key. Calls @error@ when the element can not be found.
+-- | /O(log n)/. Find the value of a key. Calls 'error' when the element can not be found.
(!) :: Ord k => Map k a -> k -> a
m ! k    = find k m

@@ -241,15 +241,15 @@ member k m
Nothing -> False
Just x  -> True

--- | /O(log n)/. Find the value of a key. Calls @error@ when the element can not be found.
+-- | /O(log n)/. Find the value of a key. Calls 'error' when the element can not be found.
find :: Ord k => k -> Map k a -> a
find k m
= case lookup k m of
Nothing -> error "Map.find: element not in the map"
Just x  -> x

--- | /O(log n)/. The expression @(findWithDefault def k map)@ returns the value of key @k@ or returns @def@ when
--- the key is not in the map.
+-- | /O(log n)/. The expression @('findWithDefault' def k map)@ returns
+-- the value of key @k@ or returns @def@ when the key is not in the map.
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault def k m
= case lookup k m of
@@ -302,9 +302,9 @@ insertWithKey f kx x t
GT -> balance ky y l (insertWithKey f kx x r)
EQ -> Bin sy ky (f ky x y) l r

--- | /O(log n)/. The expression (@insertLookupWithKey f k x map@) is a pair where
--- the first element is equal to (@lookup k map@) and the second element
--- equal to (@insertWithKey f k x map@).
+-- | /O(log n)/. The expression (@'insertLookupWithKey' f k x map@)
+-- is a pair where the first element is equal to (@'lookup' k map@)
+-- and the second element equal to (@'insertWithKey' f k x map@).
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a,Map k a)
insertLookupWithKey f kx x t
= case t of
@@ -343,16 +343,17 @@ adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
= updateWithKey (\k x -> Just (f k x)) k m

--- | /O(log n)/. The expression (@update f k map@) updates the value @x@
--- at @k@ (if it is in the map). If (@f x@) is @Nothing@, the element is
--- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
+-- | /O(log n)/. The expression (@'update' f k map@) updates the value @x@
+-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
+-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update f k m
= updateWithKey (\k x -> f x) k m

--- | /O(log n)/. The expression (@update f k map@) updates the value @x@
--- at @k@ (if it is in the map). If (@f k x@) is @Nothing@, the element is
--- deleted. If it is (@Just y@), the key @k@ is bound to the new value @y@.
+-- | /O(log n)/. The expression (@'updateWithKey' f k map@) updates the
+-- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing',
+-- the element is deleted. If it is (@'Just' y@), the key @k@ is bound
+-- to the new value @y@.
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey f k t
= case t of
@@ -429,7 +430,8 @@ updateAt f i (Bin sx kx x l r)
where
sizeL = size l

--- | /O(log n)/. Delete the element at /index/. Defined as (@deleteAt i map = updateAt (\k x -> Nothing) i map@).
+-- | /O(log n)/. Delete the element at /index/.
+-- Defined as (@'deleteAt' i map = 'updateAt' (\k x -> 'Nothing') i map@).
deleteAt :: Int -> Map k a -> Map k a
deleteAt i map
= updateAt (\k x -> Nothing) i map
@@ -497,20 +499,22 @@ updateMaxWithKey f t
{--------------------------------------------------------------------
Union.
--------------------------------------------------------------------}
--- | The union of a list of maps: (@unions == foldl union empty@).
+-- | The union of a list of maps:
+--   (@'unions' == 'Prelude.foldl' 'union' 'empty'@).
unions :: Ord k => [Map k a] -> Map k a
unions ts
= foldlStrict union empty ts

-- | The union of a list of maps, with a combining operation:
---   (@unionsWith f == foldl (unionWith f) empty@).
+--   (@'unionsWith' f == 'Prelude.foldl' ('unionWith' f) 'empty'@).
unionsWith :: Ord k => (a->a->a) -> [Map k a] -> Map k a
unionsWith f ts
= foldlStrict (unionWith f) empty ts

-- | /O(n+m)/.
-- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@.
--- It prefers @t1@ when duplicate keys are encountered, ie. (@union == unionWith const@).
+-- It prefers @t1@ when duplicate keys are encountered,
+-- i.e. (@'union' == 'unionWith' 'const'@).
-- The implementation uses the efficient /hedge-union/ algorithm.
-- Hedge-union is more efficient on (bigset `union` smallset)?
union :: Ord k => Map k a -> Map k a -> Map k a
@@ -610,8 +614,8 @@ differenceWith f m1 m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
--- If it returns @Nothing@, the element is discarded (proper set difference). If
--- it returns (@Just y@), the element is updated with a new value @y@.
+-- If it returns 'Nothing', the element is discarded (proper set difference). If
+-- it returns (@'Just' y@), the element is updated with a new value @y@.
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey f Tip t2  = Tip
@@ -641,7 +645,7 @@ hedgeDiffWithKey f cmplo cmphi t (Bin _ kx x l r)
Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. Intersection of two maps. The values in the first
--- map are returned, i.e. (@intersection m1 m2 == intersectionWith const m1 m2@).
+-- map are returned, i.e. (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@).
intersection :: Ord k => Map k a -> Map k b -> Map k a
intersection m1 m2
= intersectionWithKey (\k x y -> x) m1 m2
@@ -679,22 +683,22 @@ intersectWithKey f t (Bin _ kx x l r)
Submap
--------------------------------------------------------------------}
-- | /O(n+m)/.
--- This function is defined as (@submap = submapBy (==)@).
+-- This function is defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@).
isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isSubmapOf m1 m2
= isSubmapOfBy (==) m1 m2

{- | /O(n+m)/.
- The expression (@isSubmapOfBy f t1 t2@) returns @True@ if
- all keys in @t1@ are in tree @t2@, and when @f@ returns @True@ when
+ The expression (@'isSubmapOfBy' f t1 t2@) returns 'True' if
+ all keys in @t1@ are in tree @t2@, and when @f@ returns 'True' when
applied to their respective values. For example, the following
- expressions are all @True@.
+ expressions are all 'True':

> isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
> isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
> isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)])

- But the following are all @False@:
+ But the following are all 'False':

> isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)])
> isSubmapOfBy (<)  (fromList [('a',1)]) (fromList [('a',1),('b',2)])
@@ -714,22 +718,22 @@ submap' f (Bin _ kx x l r) t
(found,lt,gt) = splitLookup kx t

-- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
--- Defined as (@isProperSubmapOf = isProperSubmapOfBy (==)@).
+-- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@).
isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf m1 m2
= isProperSubmapOfBy (==) m1 m2

{- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
- The expression (@isProperSubmapOfBy f m1 m2@) returns @True@ when
+ The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when
@m1@ and @m2@ are not equal,
- all keys in @m1@ are in @m2@, and when @f@ returns @True@ when
+ all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
applied to their respective values. For example, the following
- expressions are all @True@.
+ expressions are all 'True':

> isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

- But the following are all @False@:
+ But the following are all 'False':

> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
> isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
@@ -789,19 +793,19 @@ mapWithKey f Tip = Tip
mapWithKey f (Bin sx kx x l r)
= Bin sx kx (f kx x) (mapWithKey f l) (mapWithKey f r)

--- | /O(n)/. The function @mapAccum@ threads an accumulating
+-- | /O(n)/. The function 'mapAccum' threads an accumulating
-- argument through the map in an unspecified order.
mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccum f a m
= mapAccumWithKey (\a k x -> f a x) a m

--- | /O(n)/. The function @mapAccumWithKey@ threads an accumulating
+-- | /O(n)/. The function 'mapAccumWithKey' threads an accumulating
-- argument through the map in unspecified order. (= ascending pre-order)
mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumWithKey f a t
= mapAccumL f a t

--- | /O(n)/. The function @mapAccumL@ threads an accumulating
+-- | /O(n)/. The function 'mapAccumL' threads an accumulating
-- argument throught the map in (ascending) pre-order.
mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumL f a t
@@ -813,7 +817,7 @@ mapAccumL f a t
(a3,r') = mapAccumL f a2 r
in (a3,Bin sx kx x' l' r')

--- | /O(n)/. The function @mapAccumR@ threads an accumulating
+-- | /O(n)/. The function 'mapAccumR' threads an accumulating
-- argument throught the map in (descending) post-order.
mapAccumR :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumR f a t
@@ -826,7 +830,7 @@ mapAccumR f a t
in (a3,Bin sx kx x' l' r')

-- | /O(n*log n)/.
--- @mapKeys f s@ is the map obtained by applying @f@ to each key of @s@.
+-- @'mapKeys' f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@
@@ -835,7 +839,7 @@ mapKeys :: Ord k2 => (k1->k2) -> Map k1 a -> Map k2 a
mapKeys = mapKeysWith (\x y->x)

-- | /O(n*log n)/.
--- @mapKeysWith c f s@ is the map obtained by applying @f@ to each key of @s@.
+-- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@
@@ -846,14 +850,13 @@ mapKeysWith c f = fromListWith c . List.map fFirst . toList
where fFirst (x,y) = (f x, y)

--- | /O(n)/. The
---
--- @mapMonotonic f s == 'map' f s@, but works only when @f@ is monotonic.
+-- | /O(n)/.
+-- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@ is monotonic.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
--- >                     ==> mapMonotonic f s == map f s
+-- >                     ==> mapKeysMonotonic f s == mapKeys f s
-- >     where ls = keys s

mapKeysMonotonic :: (k1->k2) -> Map k1 a -> Map k2 a
@@ -966,7 +969,8 @@ fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWith f xs
= fromAscListWithKey (\k x y -> f x y) xs

--- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys
+-- | /O(n)/. Build a map from an ascending list in linear time with a
+-- combining function for equal keys.
-- /The precondition (input list is ascending) is not checked./
fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWithKey f xs
@@ -986,7 +990,6 @@ fromAscListWithKey f xs

-- | /O(n)/. Build a map from an ascending list of distinct elements in linear time.
---
-- /The precondition is not checked./
fromDistinctAscList :: [(k,a)] -> Map k a
fromDistinctAscList xs
@@ -1073,7 +1076,7 @@ filterLt cmp (Bin sx kx x l r)
{--------------------------------------------------------------------
Split
--------------------------------------------------------------------}
--- | /O(log n)/. The expression (@split k map@) is a pair @(map1,map2)@ where
+-- | /O(log n)/. The expression (@'split' k map@) is a pair @(map1,map2)@ where
-- the keys in @map1@ are smaller than @k@ and the keys in @map2@ larger than @k@. Any key equal to @k@ is found in neither @map1@ nor @map2@.
split :: Ord k => k -> Map k a -> (Map k a,Map k a)
split k Tip = (Tip,Tip)
@@ -1083,8 +1086,8 @@ split k (Bin sx kx x l r)
GT -> let (lt,gt) = split k r in (join kx x l lt,gt)
EQ -> (l,r)

--- | /O(log n)/. The expression (@splitLookup k map@) splits a map just
--- like 'split' but also returns @lookup k map@.
+-- | /O(log n)/. The expression (@'splitLookup' k map@) splits a map just
+-- like 'split' but also returns @'lookup' k map@.
splitLookup :: Ord k => k -> Map k a -> (Maybe a,Map k a,Map k a)
splitLookup k Tip = (Nothing,Tip,Tip)
splitLookup k (Bin sx kx x l r)
@@ -1315,10 +1318,10 @@ showTree m
showElem k x  = show k ++ ":=" ++ show x

-{- | /O(n)/. The expression (@showTreeWith showelem hang wide map@) shows
+{- | /O(n)/. The expression (@'showTreeWith' showelem hang wide map@) shows
the tree that implements the map. Elements are shown using the @showElem@ function. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
- @wide@ is true, an extra wide version is shown.
'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
+ @wide@ is 'True', an extra wide version is shown.

>  Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]
>  Map> putStrLn \$ showTreeWith (\k x -> show (k,x)) True False t
index e85df99..fb58ce2 100644 (file)
@@ -111,7 +111,7 @@ module Data.Set  (
delFromSet,     -- :: Ord a => Set a -> a -> Set a
) where

-import Prelude hiding (filter,foldr,foldl,null,map)
+import Prelude hiding (filter,foldr,null,map)
import Data.Monoid
import qualified Data.List as List
import Data.Typeable
@@ -240,7 +240,7 @@ isProperSubsetOf s1 s2

-- | /O(n+m)/. Is this a subset?
--- @(s1 `isSubsetOf` s2)@ tells whether s1 is a subset of s2.
+-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.
isSubsetOf :: Ord a => Set a -> Set a -> Bool
isSubsetOf t1 t2
= (size t1 <= size t2) && (isSubsetOfX t1 t2)
@@ -284,7 +284,7 @@ deleteMax Tip             = Tip
{--------------------------------------------------------------------
Union.
--------------------------------------------------------------------}
--- | The union of a list of sets: (@unions == foldl union empty@).
+-- | The union of a list of sets: (@'unions' == 'foldl' 'union' 'empty'@).
unions :: Ord a => [Set a] -> Set a
unions ts
= foldlStrict union empty ts
@@ -379,7 +379,7 @@ partition p (Bin _ x l r)
----------------------------------------------------------------------}

-- | /O(n*log n)/.
--- @map f s@ is the set obtained by applying @f@ to each element of @s@.
+-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@
@@ -389,7 +389,7 @@ map f = fromList . List.map f . toList

-- | /O(n)/. The
--
--- @mapMonotonic f s == 'map' f s@, but works only when @f@ is monotonic.
+-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is monotonic.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
@@ -603,7 +603,7 @@ filterLt cmp (Bin sx x l r)
{--------------------------------------------------------------------
Split
--------------------------------------------------------------------}
--- | /O(log n)/. The expression (@split x set@) is a pair @(set1,set2)@
+-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where all elements in @set1@ are lower than @x@ and all elements in
-- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@.
split :: Ord a => a -> Set a -> (Set a,Set a)
@@ -831,7 +831,7 @@ showTree s
{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
the tree that implements the set. If @hang@ is
@True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
- @wide@ is true, an extra wide version is shown.
+ @wide@ is 'True', an extra wide version is shown.

> Set> putStrLn \$ showTreeWith True False \$ fromDistinctAscList [1..5]
> 4