bbfd95e5ec1337ec4daf904f6a8a79133df7745f
[libffi.git] / .pc / win64-struct-args / src / x86 / ffi.c
1 /* -----------------------------------------------------------------------
2 ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc.
3 Copyright (c) 2002 Ranjit Mathew
4 Copyright (c) 2002 Bo Thorsen
5 Copyright (c) 2002 Roger Sayle
6 Copyright (C) 2008, 2010 Free Software Foundation, Inc.
7
8 x86 Foreign Function Interface
9
10 Permission is hereby granted, free of charge, to any person obtaining
11 a copy of this software and associated documentation files (the
12 ``Software''), to deal in the Software without restriction, including
13 without limitation the rights to use, copy, modify, merge, publish,
14 distribute, sublicense, and/or sell copies of the Software, and to
15 permit persons to whom the Software is furnished to do so, subject to
16 the following conditions:
17
18 The above copyright notice and this permission notice shall be included
19 in all copies or substantial portions of the Software.
20
21 THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
22 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
27 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 DEALINGS IN THE SOFTWARE.
29 ----------------------------------------------------------------------- */
30
31 #if !defined(__x86_64__) || defined(_WIN64)
32
33 #ifdef _WIN64
34 #include <windows.h>
35 #endif
36
37 #include <ffi.h>
38 #include <ffi_common.h>
39
40 #include <stdlib.h>
41
42 /* ffi_prep_args is called by the assembly routine once stack space
43 has been allocated for the function's arguments */
44
45 void ffi_prep_args(char *stack, extended_cif *ecif)
46 {
47 register unsigned int i;
48 register void **p_argv;
49 register char *argp;
50 register ffi_type **p_arg;
51 #ifdef X86_WIN32
52 size_t p_stack_args[2];
53 void *p_stack_data[2];
54 char *argp2 = stack;
55 int stack_args_count = 0;
56 int cabi = ecif->cif->abi;
57 #endif
58
59 argp = stack;
60
61 if (ecif->cif->flags == FFI_TYPE_STRUCT
62 #ifdef X86_WIN64
63 && (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2
64 && ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8)
65 #endif
66 )
67 {
68 *(void **) argp = ecif->rvalue;
69 #ifdef X86_WIN32
70 /* For fastcall/thiscall this is first register-passed
71 argument. */
72 if (cabi == FFI_THISCALL || cabi == FFI_FASTCALL)
73 {
74 p_stack_args[stack_args_count] = sizeof (void*);
75 p_stack_data[stack_args_count] = argp;
76 ++stack_args_count;
77 }
78 #endif
79 argp += sizeof(void*);
80 }
81
82 p_argv = ecif->avalue;
83
84 for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
85 i != 0;
86 i--, p_arg++)
87 {
88 size_t z;
89
90 /* Align if necessary */
91 if ((sizeof(void*) - 1) & (size_t) argp)
92 argp = (char *) ALIGN(argp, sizeof(void*));
93
94 z = (*p_arg)->size;
95 #ifdef X86_WIN64
96 if (z > sizeof(ffi_arg)
97 || ((*p_arg)->type == FFI_TYPE_STRUCT
98 && (z != 1 && z != 2 && z != 4 && z != 8))
99 #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
100 || ((*p_arg)->type == FFI_TYPE_LONGDOUBLE)
101 #endif
102 )
103 {
104 z = sizeof(ffi_arg);
105 *(void **)argp = *p_argv;
106 }
107 else if ((*p_arg)->type == FFI_TYPE_FLOAT)
108 {
109 memcpy(argp, *p_argv, z);
110 }
111 else
112 #endif
113 if (z < sizeof(ffi_arg))
114 {
115 z = sizeof(ffi_arg);
116 switch ((*p_arg)->type)
117 {
118 case FFI_TYPE_SINT8:
119 *(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv);
120 break;
121
122 case FFI_TYPE_UINT8:
123 *(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv);
124 break;
125
126 case FFI_TYPE_SINT16:
127 *(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv);
128 break;
129
130 case FFI_TYPE_UINT16:
131 *(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv);
132 break;
133
134 case FFI_TYPE_SINT32:
135 *(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv);
136 break;
137
138 case FFI_TYPE_UINT32:
139 *(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv);
140 break;
141
142 case FFI_TYPE_STRUCT:
143 *(ffi_arg *) argp = *(ffi_arg *)(* p_argv);
144 break;
145
146 default:
147 FFI_ASSERT(0);
148 }
149 }
150 else
151 {
152 memcpy(argp, *p_argv, z);
153 }
154
155 #ifdef X86_WIN32
156 /* For thiscall/fastcall convention register-passed arguments
157 are the first two none-floating-point arguments with a size
158 smaller or equal to sizeof (void*). */
159 if ((cabi == FFI_THISCALL && stack_args_count < 1)
160 || (cabi == FFI_FASTCALL && stack_args_count < 2))
161 {
162 if (z <= 4
163 && ((*p_arg)->type != FFI_TYPE_FLOAT
164 && (*p_arg)->type != FFI_TYPE_STRUCT))
165 {
166 p_stack_args[stack_args_count] = z;
167 p_stack_data[stack_args_count] = argp;
168 ++stack_args_count;
169 }
170 }
171 #endif
172 p_argv++;
173 #ifdef X86_WIN64
174 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
175 #else
176 argp += z;
177 #endif
178 }
179
180 #ifdef X86_WIN32
181 /* We need to move the register-passed arguments for thiscall/fastcall
182 on top of stack, so that those can be moved to registers ecx/edx by
183 call-handler. */
184 if (stack_args_count > 0)
185 {
186 size_t zz = (p_stack_args[0] + 3) & ~3;
187 char *h;
188
189 /* Move first argument to top-stack position. */
190 if (p_stack_data[0] != argp2)
191 {
192 h = alloca (zz + 1);
193 memcpy (h, p_stack_data[0], zz);
194 memmove (argp2 + zz, argp2,
195 (size_t) ((char *) p_stack_data[0] - (char*)argp2));
196 memcpy (argp2, h, zz);
197 }
198
199 argp2 += zz;
200 --stack_args_count;
201 if (zz > 4)
202 stack_args_count = 0;
203
204 /* If we have a second argument, then move it on top
205 after the first one. */
206 if (stack_args_count > 0 && p_stack_data[1] != argp2)
207 {
208 zz = p_stack_args[1];
209 zz = (zz + 3) & ~3;
210 h = alloca (zz + 1);
211 h = alloca (zz + 1);
212 memcpy (h, p_stack_data[1], zz);
213 memmove (argp2 + zz, argp2, (size_t) ((char*) p_stack_data[1] - (char*)argp2));
214 memcpy (argp2, h, zz);
215 }
216 }
217 #endif
218 return;
219 }
220
221 /* Perform machine dependent cif processing */
222 ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
223 {
224 unsigned int i;
225 ffi_type **ptr;
226
227 /* Set the return type flag */
228 switch (cif->rtype->type)
229 {
230 case FFI_TYPE_VOID:
231 #if defined(X86) || defined (X86_WIN32) || defined(X86_FREEBSD) || defined(X86_DARWIN) || defined(X86_WIN64)
232 case FFI_TYPE_UINT8:
233 case FFI_TYPE_UINT16:
234 case FFI_TYPE_SINT8:
235 case FFI_TYPE_SINT16:
236 #endif
237 #ifdef X86_WIN64
238 case FFI_TYPE_UINT32:
239 case FFI_TYPE_SINT32:
240 #endif
241 case FFI_TYPE_SINT64:
242 case FFI_TYPE_FLOAT:
243 case FFI_TYPE_DOUBLE:
244 #ifndef X86_WIN64
245 #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
246 case FFI_TYPE_LONGDOUBLE:
247 #endif
248 #endif
249 cif->flags = (unsigned) cif->rtype->type;
250 break;
251
252 case FFI_TYPE_UINT64:
253 #ifdef X86_WIN64
254 case FFI_TYPE_POINTER:
255 #endif
256 cif->flags = FFI_TYPE_SINT64;
257 break;
258
259 case FFI_TYPE_STRUCT:
260 #ifndef X86
261 if (cif->rtype->size == 1)
262 {
263 cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */
264 }
265 else if (cif->rtype->size == 2)
266 {
267 cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */
268 }
269 else if (cif->rtype->size == 4)
270 {
271 #ifdef X86_WIN64
272 cif->flags = FFI_TYPE_SMALL_STRUCT_4B;
273 #else
274 cif->flags = FFI_TYPE_INT; /* same as int type */
275 #endif
276 }
277 else if (cif->rtype->size == 8)
278 {
279 cif->flags = FFI_TYPE_SINT64; /* same as int64 type */
280 }
281 else
282 #endif
283 {
284 cif->flags = FFI_TYPE_STRUCT;
285 /* allocate space for return value pointer */
286 cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG);
287 }
288 break;
289
290 default:
291 #ifdef X86_WIN64
292 cif->flags = FFI_TYPE_SINT64;
293 break;
294 case FFI_TYPE_INT:
295 cif->flags = FFI_TYPE_SINT32;
296 #else
297 cif->flags = FFI_TYPE_INT;
298 #endif
299 break;
300 }
301
302 for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
303 {
304 if (((*ptr)->alignment - 1) & cif->bytes)
305 cif->bytes = ALIGN(cif->bytes, (*ptr)->alignment);
306 cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG);
307 }
308
309 #ifdef X86_WIN64
310 /* ensure space for storing four registers */
311 cif->bytes += 4 * sizeof(ffi_arg);
312 #endif
313
314 #ifdef X86_DARWIN
315 cif->bytes = (cif->bytes + 15) & ~0xF;
316 #endif
317
318 return FFI_OK;
319 }
320
321 #ifdef X86_WIN64
322 extern int
323 ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *,
324 unsigned, unsigned, unsigned *, void (*fn)(void));
325 #elif defined(X86_WIN32)
326 extern void
327 ffi_call_win32(void (*)(char *, extended_cif *), extended_cif *,
328 unsigned, unsigned, unsigned, unsigned *, void (*fn)(void));
329 #else
330 extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
331 unsigned, unsigned, unsigned *, void (*fn)(void));
332 #endif
333
334 void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
335 {
336 extended_cif ecif;
337
338 ecif.cif = cif;
339 ecif.avalue = avalue;
340
341 /* If the return value is a struct and we don't have a return */
342 /* value address then we need to make one */
343
344 #ifdef X86_WIN64
345 if (rvalue == NULL
346 && cif->flags == FFI_TYPE_STRUCT
347 && cif->rtype->size != 1 && cif->rtype->size != 2
348 && cif->rtype->size != 4 && cif->rtype->size != 8)
349 {
350 ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF);
351 }
352 #else
353 if (rvalue == NULL
354 && cif->flags == FFI_TYPE_STRUCT)
355 {
356 ecif.rvalue = alloca(cif->rtype->size);
357 }
358 #endif
359 else
360 ecif.rvalue = rvalue;
361
362
363 switch (cif->abi)
364 {
365 #ifdef X86_WIN64
366 case FFI_WIN64:
367 {
368 /* Make copies of all struct arguments
369 NOTE: not sure if responsibility should be here or in caller */
370 unsigned int i;
371 for (i=0; i < cif->nargs;i++) {
372 size_t size = cif->arg_types[i]->size;
373 if ((cif->arg_types[i]->type == FFI_TYPE_STRUCT
374 && (size != 1 && size != 2 && size != 4 && size != 8))
375 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
376 || cif->arg_types[i]->type == FFI_TYPE_LONGDOUBLE
377 #endif
378 )
379 {
380 void *local = alloca(size);
381 memcpy(local, avalue[i], size);
382 avalue[i] = local;
383 }
384 }
385 ffi_call_win64(ffi_prep_args, &ecif, cif->bytes,
386 cif->flags, ecif.rvalue, fn);
387 }
388 break;
389 #elif defined(X86_WIN32)
390 case FFI_SYSV:
391 case FFI_STDCALL:
392 ffi_call_win32(ffi_prep_args, &ecif, cif->abi, cif->bytes, cif->flags,
393 ecif.rvalue, fn);
394 break;
395 case FFI_THISCALL:
396 case FFI_FASTCALL:
397 {
398 unsigned int abi = cif->abi;
399 unsigned int i, passed_regs = 0;
400
401 if (cif->flags == FFI_TYPE_STRUCT)
402 ++passed_regs;
403
404 for (i=0; i < cif->nargs && passed_regs < 2;i++)
405 {
406 size_t sz;
407
408 if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
409 || cif->arg_types[i]->type == FFI_TYPE_STRUCT)
410 continue;
411 sz = (cif->arg_types[i]->size + 3) & ~3;
412 if (sz == 0 || sz > 4)
413 continue;
414 ++passed_regs;
415 }
416 if (passed_regs < 2 && abi == FFI_FASTCALL)
417 abi = FFI_THISCALL;
418 if (passed_regs < 1 && abi == FFI_THISCALL)
419 abi = FFI_STDCALL;
420 ffi_call_win32(ffi_prep_args, &ecif, abi, cif->bytes, cif->flags,
421 ecif.rvalue, fn);
422 }
423 break;
424 #else
425 case FFI_SYSV:
426 ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
427 fn);
428 break;
429 #endif
430 default:
431 FFI_ASSERT(0);
432 break;
433 }
434 }
435
436
437 /** private members **/
438
439 /* The following __attribute__((regparm(1))) decorations will have no effect
440 on MSVC - standard cdecl convention applies. */
441 static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
442 void** args, ffi_cif* cif);
443 void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *)
444 __attribute__ ((regparm(1)));
445 unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *)
446 __attribute__ ((regparm(1)));
447 void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *)
448 __attribute__ ((regparm(1)));
449 #ifdef X86_WIN32
450 void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *)
451 __attribute__ ((regparm(1)));
452 #endif
453 #ifdef X86_WIN64
454 void FFI_HIDDEN ffi_closure_win64 (ffi_closure *);
455 #endif
456
457 /* This function is jumped to by the trampoline */
458
459 #ifdef X86_WIN64
460 void * FFI_HIDDEN
461 ffi_closure_win64_inner (ffi_closure *closure, void *args) {
462 ffi_cif *cif;
463 void **arg_area;
464 void *result;
465 void *resp = &result;
466
467 cif = closure->cif;
468 arg_area = (void**) alloca (cif->nargs * sizeof (void*));
469
470 /* this call will initialize ARG_AREA, such that each
471 * element in that array points to the corresponding
472 * value on the stack; and if the function returns
473 * a structure, it will change RESP to point to the
474 * structure return address. */
475
476 ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif);
477
478 (closure->fun) (cif, resp, arg_area, closure->user_data);
479
480 /* The result is returned in rax. This does the right thing for
481 result types except for floats; we have to 'mov xmm0, rax' in the
482 caller to correct this.
483 TODO: structure sizes of 3 5 6 7 are returned by reference, too!!!
484 */
485 return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp;
486 }
487
488 #else
489 unsigned int FFI_HIDDEN __attribute__ ((regparm(1)))
490 ffi_closure_SYSV_inner (ffi_closure *closure, void **respp, void *args)
491 {
492 /* our various things... */
493 ffi_cif *cif;
494 void **arg_area;
495
496 cif = closure->cif;
497 arg_area = (void**) alloca (cif->nargs * sizeof (void*));
498
499 /* this call will initialize ARG_AREA, such that each
500 * element in that array points to the corresponding
501 * value on the stack; and if the function returns
502 * a structure, it will change RESP to point to the
503 * structure return address. */
504
505 ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
506
507 (closure->fun) (cif, *respp, arg_area, closure->user_data);
508
509 return cif->flags;
510 }
511 #endif /* !X86_WIN64 */
512
513 static void
514 ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue,
515 ffi_cif *cif)
516 {
517 register unsigned int i;
518 register void **p_argv;
519 register char *argp;
520 register ffi_type **p_arg;
521
522 argp = stack;
523
524 #ifdef X86_WIN64
525 if (cif->rtype->size > sizeof(ffi_arg)
526 || (cif->flags == FFI_TYPE_STRUCT
527 && (cif->rtype->size != 1 && cif->rtype->size != 2
528 && cif->rtype->size != 4 && cif->rtype->size != 8))) {
529 *rvalue = *(void **) argp;
530 argp += sizeof(void *);
531 }
532 #else
533 if ( cif->flags == FFI_TYPE_STRUCT ) {
534 *rvalue = *(void **) argp;
535 argp += sizeof(void *);
536 }
537 #endif
538
539 p_argv = avalue;
540
541 for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
542 {
543 size_t z;
544
545 /* Align if necessary */
546 if ((sizeof(void*) - 1) & (size_t) argp) {
547 argp = (char *) ALIGN(argp, sizeof(void*));
548 }
549
550 #ifdef X86_WIN64
551 if ((*p_arg)->size > sizeof(ffi_arg)
552 || ((*p_arg)->type == FFI_TYPE_STRUCT
553 && ((*p_arg)->size != 1 && (*p_arg)->size != 2
554 && (*p_arg)->size != 4 && (*p_arg)->size != 8)))
555 {
556 z = sizeof(void *);
557 *p_argv = *(void **)argp;
558 }
559 else
560 #endif
561 {
562 z = (*p_arg)->size;
563
564 /* because we're little endian, this is what it turns into. */
565
566 *p_argv = (void*) argp;
567 }
568
569 p_argv++;
570 #ifdef X86_WIN64
571 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
572 #else
573 argp += z;
574 #endif
575 }
576
577 return;
578 }
579
580 #define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \
581 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
582 void* __fun = (void*)(FUN); \
583 void* __ctx = (void*)(CTX); \
584 *(unsigned char*) &__tramp[0] = 0x41; \
585 *(unsigned char*) &__tramp[1] = 0xbb; \
586 *(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \
587 *(unsigned char*) &__tramp[6] = 0x48; \
588 *(unsigned char*) &__tramp[7] = 0xb8; \
589 *(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \
590 *(unsigned char *) &__tramp[16] = 0x49; \
591 *(unsigned char *) &__tramp[17] = 0xba; \
592 *(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \
593 *(unsigned char *) &__tramp[26] = 0x41; \
594 *(unsigned char *) &__tramp[27] = 0xff; \
595 *(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \
596 }
597
598 /* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
599
600 #define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
601 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
602 unsigned int __fun = (unsigned int)(FUN); \
603 unsigned int __ctx = (unsigned int)(CTX); \
604 unsigned int __dis = __fun - (__ctx + 10); \
605 *(unsigned char*) &__tramp[0] = 0xb8; \
606 *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
607 *(unsigned char *) &__tramp[5] = 0xe9; \
608 *(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
609 }
610
611 #define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \
612 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
613 unsigned int __fun = (unsigned int)(FUN); \
614 unsigned int __ctx = (unsigned int)(CTX); \
615 unsigned int __dis = __fun - (__ctx + 10); \
616 unsigned short __size = (unsigned short)(SIZE); \
617 *(unsigned char*) &__tramp[0] = 0xb8; \
618 *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
619 *(unsigned char *) &__tramp[5] = 0xe8; \
620 *(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \
621 *(unsigned char *) &__tramp[10] = 0xc2; \
622 *(unsigned short*) &__tramp[11] = __size; /* ret __size */ \
623 }
624
625 /* the cif must already be prep'ed */
626
627 ffi_status
628 ffi_prep_closure_loc (ffi_closure* closure,
629 ffi_cif* cif,
630 void (*fun)(ffi_cif*,void*,void**,void*),
631 void *user_data,
632 void *codeloc)
633 {
634 #ifdef X86_WIN64
635 #define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE)
636 #define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0)
637 if (cif->abi == FFI_WIN64)
638 {
639 int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3);
640 FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0],
641 &ffi_closure_win64,
642 codeloc, mask);
643 /* make sure we can execute here */
644 }
645 #else
646 if (cif->abi == FFI_SYSV)
647 {
648 FFI_INIT_TRAMPOLINE (&closure->tramp[0],
649 &ffi_closure_SYSV,
650 (void*)codeloc);
651 }
652 #ifdef X86_WIN32
653 else if (cif->abi == FFI_STDCALL)
654 {
655 FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0],
656 &ffi_closure_STDCALL,
657 (void*)codeloc, cif->bytes);
658 }
659 #endif /* X86_WIN32 */
660 #endif /* !X86_WIN64 */
661 else
662 {
663 return FFI_BAD_ABI;
664 }
665
666 closure->cif = cif;
667 closure->user_data = user_data;
668 closure->fun = fun;
669
670 return FFI_OK;
671 }
672
673 /* ------- Native raw API support -------------------------------- */
674
675 #if !FFI_NO_RAW_API
676
677 ffi_status
678 ffi_prep_raw_closure_loc (ffi_raw_closure* closure,
679 ffi_cif* cif,
680 void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
681 void *user_data,
682 void *codeloc)
683 {
684 int i;
685
686 if (cif->abi != FFI_SYSV) {
687 return FFI_BAD_ABI;
688 }
689
690 /* we currently don't support certain kinds of arguments for raw
691 closures. This should be implemented by a separate assembly
692 language routine, since it would require argument processing,
693 something we don't do now for performance. */
694
695 for (i = cif->nargs-1; i >= 0; i--)
696 {
697 FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
698 FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
699 }
700
701
702 FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
703 codeloc);
704
705 closure->cif = cif;
706 closure->user_data = user_data;
707 closure->fun = fun;
708
709 return FFI_OK;
710 }
711
712 static void
713 ffi_prep_args_raw(char *stack, extended_cif *ecif)
714 {
715 memcpy (stack, ecif->avalue, ecif->cif->bytes);
716 }
717
718 /* we borrow this routine from libffi (it must be changed, though, to
719 * actually call the function passed in the first argument. as of
720 * libffi-1.20, this is not the case.)
721 */
722
723 void
724 ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue)
725 {
726 extended_cif ecif;
727 void **avalue = (void **)fake_avalue;
728
729 ecif.cif = cif;
730 ecif.avalue = avalue;
731
732 /* If the return value is a struct and we don't have a return */
733 /* value address then we need to make one */
734
735 if ((rvalue == NULL) &&
736 (cif->rtype->type == FFI_TYPE_STRUCT))
737 {
738 ecif.rvalue = alloca(cif->rtype->size);
739 }
740 else
741 ecif.rvalue = rvalue;
742
743
744 switch (cif->abi)
745 {
746 #ifdef X86_WIN32
747 case FFI_SYSV:
748 case FFI_STDCALL:
749 ffi_call_win32(ffi_prep_args, &ecif, cif->abi, cif->bytes, cif->flags,
750 ecif.rvalue, fn);
751 break;
752 case FFI_THISCALL:
753 case FFI_FASTCALL:
754 {
755 unsigned int abi = cif->abi;
756 unsigned int i, passed_regs = 0;
757
758 if (cif->flags == FFI_TYPE_STRUCT)
759 ++passed_regs;
760
761 for (i=0; i < cif->nargs && passed_regs < 2;i++)
762 {
763 size_t sz;
764
765 if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
766 || cif->arg_types[i]->type == FFI_TYPE_STRUCT)
767 continue;
768 sz = (cif->arg_types[i]->size + 3) & ~3;
769 if (sz == 0 || sz > 4)
770 continue;
771 ++passed_regs;
772 }
773 if (passed_regs < 2 && abi == FFI_FASTCALL)
774 cif->abi = abi = FFI_THISCALL;
775 if (passed_regs < 1 && abi == FFI_THISCALL)
776 cif->abi = abi = FFI_STDCALL;
777 ffi_call_win32(ffi_prep_args, &ecif, abi, cif->bytes, cif->flags,
778 ecif.rvalue, fn);
779 }
780 break;
781 #else
782 case FFI_SYSV:
783 ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
784 ecif.rvalue, fn);
785 break;
786 #endif
787 default:
788 FFI_ASSERT(0);
789 break;
790 }
791 }
792
793 #endif
794
795 #endif /* !__x86_64__ || X86_WIN64 */
796