Refresh config.guess and config.sub
[libffi.git] / .pc / msvc-changes / src / x86 / ffi.c
1 /* -----------------------------------------------------------------------
2 ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc.
3 Copyright (c) 2002 Ranjit Mathew
4 Copyright (c) 2002 Bo Thorsen
5 Copyright (c) 2002 Roger Sayle
6 Copyright (C) 2008, 2010 Free Software Foundation, Inc.
7
8 x86 Foreign Function Interface
9
10 Permission is hereby granted, free of charge, to any person obtaining
11 a copy of this software and associated documentation files (the
12 ``Software''), to deal in the Software without restriction, including
13 without limitation the rights to use, copy, modify, merge, publish,
14 distribute, sublicense, and/or sell copies of the Software, and to
15 permit persons to whom the Software is furnished to do so, subject to
16 the following conditions:
17
18 The above copyright notice and this permission notice shall be included
19 in all copies or substantial portions of the Software.
20
21 THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
22 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
27 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 DEALINGS IN THE SOFTWARE.
29 ----------------------------------------------------------------------- */
30
31 #if !defined(__x86_64__) || defined(_WIN64)
32
33 #ifdef _WIN64
34 #include <windows.h>
35 #endif
36
37 #include <ffi.h>
38 #include <ffi_common.h>
39
40 #include <stdlib.h>
41
42 /* ffi_prep_args is called by the assembly routine once stack space
43 has been allocated for the function's arguments */
44
45 void ffi_prep_args(char *stack, extended_cif *ecif)
46 {
47 register unsigned int i;
48 register void **p_argv;
49 register char *argp;
50 register ffi_type **p_arg;
51 #ifdef X86_WIN32
52 size_t p_stack_args[2];
53 void *p_stack_data[2];
54 char *argp2 = stack;
55 int stack_args_count = 0;
56 int cabi = ecif->cif->abi;
57 #endif
58
59 argp = stack;
60
61 if (ecif->cif->flags == FFI_TYPE_STRUCT
62 #ifdef X86_WIN64
63 && (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2
64 && ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8)
65 #endif
66 )
67 {
68 *(void **) argp = ecif->rvalue;
69 #ifdef X86_WIN32
70 /* For fastcall/thiscall this is first register-passed
71 argument. */
72 if (cabi == FFI_THISCALL || cabi == FFI_FASTCALL)
73 {
74 p_stack_args[stack_args_count] = sizeof (void*);
75 p_stack_data[stack_args_count] = argp;
76 ++stack_args_count;
77 }
78 #endif
79 argp += sizeof(void*);
80 }
81
82 p_argv = ecif->avalue;
83
84 for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
85 i != 0;
86 i--, p_arg++)
87 {
88 size_t z;
89
90 /* Align if necessary */
91 if ((sizeof(void*) - 1) & (size_t) argp)
92 argp = (char *) ALIGN(argp, sizeof(void*));
93
94 z = (*p_arg)->size;
95 #ifdef X86_WIN64
96 if (z > sizeof(ffi_arg)
97 || ((*p_arg)->type == FFI_TYPE_STRUCT
98 && (z != 1 && z != 2 && z != 4 && z != 8))
99 #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
100 || ((*p_arg)->type == FFI_TYPE_LONGDOUBLE)
101 #endif
102 )
103 {
104 z = sizeof(ffi_arg);
105 *(void **)argp = *p_argv;
106 }
107 else if ((*p_arg)->type == FFI_TYPE_FLOAT)
108 {
109 memcpy(argp, *p_argv, z);
110 }
111 else
112 #endif
113 if (z < sizeof(ffi_arg))
114 {
115 z = sizeof(ffi_arg);
116 switch ((*p_arg)->type)
117 {
118 case FFI_TYPE_SINT8:
119 *(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv);
120 break;
121
122 case FFI_TYPE_UINT8:
123 *(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv);
124 break;
125
126 case FFI_TYPE_SINT16:
127 *(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv);
128 break;
129
130 case FFI_TYPE_UINT16:
131 *(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv);
132 break;
133
134 case FFI_TYPE_SINT32:
135 *(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv);
136 break;
137
138 case FFI_TYPE_UINT32:
139 *(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv);
140 break;
141
142 case FFI_TYPE_STRUCT:
143 *(ffi_arg *) argp = *(ffi_arg *)(* p_argv);
144 break;
145
146 default:
147 FFI_ASSERT(0);
148 }
149 }
150 else
151 {
152 memcpy(argp, *p_argv, z);
153 }
154
155 #ifdef X86_WIN32
156 /* For thiscall/fastcall convention register-passed arguments
157 are the first two none-floating-point arguments with a size
158 smaller or equal to sizeof (void*). */
159 if ((cabi == FFI_THISCALL && stack_args_count < 1)
160 || (cabi == FFI_FASTCALL && stack_args_count < 2))
161 {
162 if (z <= 4
163 && ((*p_arg)->type != FFI_TYPE_FLOAT
164 && (*p_arg)->type != FFI_TYPE_STRUCT))
165 {
166 p_stack_args[stack_args_count] = z;
167 p_stack_data[stack_args_count] = argp;
168 ++stack_args_count;
169 }
170 }
171 #endif
172 p_argv++;
173 #ifdef X86_WIN64
174 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
175 #else
176 argp += z;
177 #endif
178 }
179
180 #ifdef X86_WIN32
181 /* We need to move the register-passed arguments for thiscall/fastcall
182 on top of stack, so that those can be moved to registers ecx/edx by
183 call-handler. */
184 if (stack_args_count > 0)
185 {
186 size_t zz = (p_stack_args[0] + 3) & ~3;
187 char *h;
188
189 /* Move first argument to top-stack position. */
190 if (p_stack_data[0] != argp2)
191 {
192 h = alloca (zz + 1);
193 memcpy (h, p_stack_data[0], zz);
194 memmove (argp2 + zz, argp2,
195 (size_t) ((char *) p_stack_data[0] - (char*)argp2));
196 memcpy (argp2, h, zz);
197 }
198
199 argp2 += zz;
200 --stack_args_count;
201 if (zz > 4)
202 stack_args_count = 0;
203
204 /* If we have a second argument, then move it on top
205 after the first one. */
206 if (stack_args_count > 0 && p_stack_data[1] != argp2)
207 {
208 zz = p_stack_args[1];
209 zz = (zz + 3) & ~3;
210 h = alloca (zz + 1);
211 h = alloca (zz + 1);
212 memcpy (h, p_stack_data[1], zz);
213 memmove (argp2 + zz, argp2, (size_t) ((char*) p_stack_data[1] - (char*)argp2));
214 memcpy (argp2, h, zz);
215 }
216 }
217 #endif
218 return;
219 }
220
221 /* Perform machine dependent cif processing */
222 ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
223 {
224 unsigned int i;
225 ffi_type **ptr;
226
227 /* Set the return type flag */
228 switch (cif->rtype->type)
229 {
230 case FFI_TYPE_VOID:
231 case FFI_TYPE_UINT8:
232 case FFI_TYPE_UINT16:
233 case FFI_TYPE_SINT8:
234 case FFI_TYPE_SINT16:
235 #ifdef X86_WIN64
236 case FFI_TYPE_UINT32:
237 case FFI_TYPE_SINT32:
238 #endif
239 case FFI_TYPE_SINT64:
240 case FFI_TYPE_FLOAT:
241 case FFI_TYPE_DOUBLE:
242 #ifndef X86_WIN64
243 #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
244 case FFI_TYPE_LONGDOUBLE:
245 #endif
246 #endif
247 cif->flags = (unsigned) cif->rtype->type;
248 break;
249
250 case FFI_TYPE_UINT64:
251 #ifdef X86_WIN64
252 case FFI_TYPE_POINTER:
253 #endif
254 cif->flags = FFI_TYPE_SINT64;
255 break;
256
257 case FFI_TYPE_STRUCT:
258 #ifndef X86
259 if (cif->rtype->size == 1)
260 {
261 cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */
262 }
263 else if (cif->rtype->size == 2)
264 {
265 cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */
266 }
267 else if (cif->rtype->size == 4)
268 {
269 #ifdef X86_WIN64
270 cif->flags = FFI_TYPE_SMALL_STRUCT_4B;
271 #else
272 cif->flags = FFI_TYPE_INT; /* same as int type */
273 #endif
274 }
275 else if (cif->rtype->size == 8)
276 {
277 cif->flags = FFI_TYPE_SINT64; /* same as int64 type */
278 }
279 else
280 #endif
281 {
282 cif->flags = FFI_TYPE_STRUCT;
283 /* allocate space for return value pointer */
284 cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG);
285 }
286 break;
287
288 default:
289 #ifdef X86_WIN64
290 cif->flags = FFI_TYPE_SINT64;
291 break;
292 case FFI_TYPE_INT:
293 cif->flags = FFI_TYPE_SINT32;
294 #else
295 cif->flags = FFI_TYPE_INT;
296 #endif
297 break;
298 }
299
300 for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
301 {
302 if (((*ptr)->alignment - 1) & cif->bytes)
303 cif->bytes = ALIGN(cif->bytes, (*ptr)->alignment);
304 cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG);
305 }
306
307 #ifdef X86_WIN64
308 /* ensure space for storing four registers */
309 cif->bytes += 4 * sizeof(ffi_arg);
310 #endif
311
312 #ifdef X86_DARWIN
313 cif->bytes = (cif->bytes + 15) & ~0xF;
314 #endif
315
316 return FFI_OK;
317 }
318
319 #ifdef X86_WIN64
320 extern int
321 ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *,
322 unsigned, unsigned, unsigned *, void (*fn)(void));
323 #elif defined(X86_WIN32)
324 extern void
325 ffi_call_win32(void (*)(char *, extended_cif *), extended_cif *,
326 unsigned, unsigned, unsigned, unsigned *, void (*fn)(void));
327 #else
328 extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
329 unsigned, unsigned, unsigned *, void (*fn)(void));
330 #endif
331
332 void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
333 {
334 extended_cif ecif;
335
336 ecif.cif = cif;
337 ecif.avalue = avalue;
338
339 /* If the return value is a struct and we don't have a return */
340 /* value address then we need to make one */
341
342 #ifdef X86_WIN64
343 if (rvalue == NULL
344 && cif->flags == FFI_TYPE_STRUCT
345 && cif->rtype->size != 1 && cif->rtype->size != 2
346 && cif->rtype->size != 4 && cif->rtype->size != 8)
347 {
348 ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF);
349 }
350 #else
351 if (rvalue == NULL
352 && cif->flags == FFI_TYPE_STRUCT)
353 {
354 ecif.rvalue = alloca(cif->rtype->size);
355 }
356 #endif
357 else
358 ecif.rvalue = rvalue;
359
360
361 switch (cif->abi)
362 {
363 #ifdef X86_WIN64
364 case FFI_WIN64:
365 ffi_call_win64(ffi_prep_args, &ecif, cif->bytes,
366 cif->flags, ecif.rvalue, fn);
367 break;
368 #elif defined(X86_WIN32)
369 case FFI_SYSV:
370 case FFI_STDCALL:
371 ffi_call_win32(ffi_prep_args, &ecif, cif->abi, cif->bytes, cif->flags,
372 ecif.rvalue, fn);
373 break;
374 case FFI_THISCALL:
375 case FFI_FASTCALL:
376 {
377 unsigned int abi = cif->abi;
378 unsigned int i, passed_regs = 0;
379
380 if (cif->flags == FFI_TYPE_STRUCT)
381 ++passed_regs;
382
383 for (i=0; i < cif->nargs && passed_regs < 2;i++)
384 {
385 size_t sz;
386
387 if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
388 || cif->arg_types[i]->type == FFI_TYPE_STRUCT)
389 continue;
390 sz = (cif->arg_types[i]->size + 3) & ~3;
391 if (sz == 0 || sz > 4)
392 continue;
393 ++passed_regs;
394 }
395 if (passed_regs < 2 && abi == FFI_FASTCALL)
396 abi = FFI_THISCALL;
397 if (passed_regs < 1 && abi == FFI_THISCALL)
398 abi = FFI_STDCALL;
399 ffi_call_win32(ffi_prep_args, &ecif, abi, cif->bytes, cif->flags,
400 ecif.rvalue, fn);
401 }
402 break;
403 #else
404 case FFI_SYSV:
405 ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
406 fn);
407 break;
408 #endif
409 default:
410 FFI_ASSERT(0);
411 break;
412 }
413 }
414
415
416 /** private members **/
417
418 /* The following __attribute__((regparm(1))) decorations will have no effect
419 on MSVC - standard cdecl convention applies. */
420 static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
421 void** args, ffi_cif* cif);
422 void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *)
423 __attribute__ ((regparm(1)));
424 unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *)
425 __attribute__ ((regparm(1)));
426 void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *)
427 __attribute__ ((regparm(1)));
428 #ifdef X86_WIN32
429 void FFI_HIDDEN ffi_closure_raw_THISCALL (ffi_raw_closure *)
430 __attribute__ ((regparm(1)));
431 void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *)
432 __attribute__ ((regparm(1)));
433 void FFI_HIDDEN ffi_closure_THISCALL (ffi_closure *)
434 __attribute__ ((regparm(1)));
435 #endif
436 #ifdef X86_WIN64
437 void FFI_HIDDEN ffi_closure_win64 (ffi_closure *);
438 #endif
439
440 /* This function is jumped to by the trampoline */
441
442 #ifdef X86_WIN64
443 void * FFI_HIDDEN
444 ffi_closure_win64_inner (ffi_closure *closure, void *args) {
445 ffi_cif *cif;
446 void **arg_area;
447 void *result;
448 void *resp = &result;
449
450 cif = closure->cif;
451 arg_area = (void**) alloca (cif->nargs * sizeof (void*));
452
453 /* this call will initialize ARG_AREA, such that each
454 * element in that array points to the corresponding
455 * value on the stack; and if the function returns
456 * a structure, it will change RESP to point to the
457 * structure return address. */
458
459 ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif);
460
461 (closure->fun) (cif, resp, arg_area, closure->user_data);
462
463 /* The result is returned in rax. This does the right thing for
464 result types except for floats; we have to 'mov xmm0, rax' in the
465 caller to correct this.
466 TODO: structure sizes of 3 5 6 7 are returned by reference, too!!!
467 */
468 return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp;
469 }
470
471 #else
472 unsigned int FFI_HIDDEN __attribute__ ((regparm(1)))
473 ffi_closure_SYSV_inner (ffi_closure *closure, void **respp, void *args)
474 {
475 /* our various things... */
476 ffi_cif *cif;
477 void **arg_area;
478
479 cif = closure->cif;
480 arg_area = (void**) alloca (cif->nargs * sizeof (void*));
481
482 /* this call will initialize ARG_AREA, such that each
483 * element in that array points to the corresponding
484 * value on the stack; and if the function returns
485 * a structure, it will change RESP to point to the
486 * structure return address. */
487
488 ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
489
490 (closure->fun) (cif, *respp, arg_area, closure->user_data);
491
492 return cif->flags;
493 }
494 #endif /* !X86_WIN64 */
495
496 static void
497 ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue,
498 ffi_cif *cif)
499 {
500 register unsigned int i;
501 register void **p_argv;
502 register char *argp;
503 register ffi_type **p_arg;
504
505 argp = stack;
506
507 #ifdef X86_WIN64
508 if (cif->rtype->size > sizeof(ffi_arg)
509 || (cif->flags == FFI_TYPE_STRUCT
510 && (cif->rtype->size != 1 && cif->rtype->size != 2
511 && cif->rtype->size != 4 && cif->rtype->size != 8))) {
512 *rvalue = *(void **) argp;
513 argp += sizeof(void *);
514 }
515 #else
516 if ( cif->flags == FFI_TYPE_STRUCT ) {
517 *rvalue = *(void **) argp;
518 argp += sizeof(void *);
519 }
520 #endif
521
522 p_argv = avalue;
523
524 for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
525 {
526 size_t z;
527
528 /* Align if necessary */
529 if ((sizeof(void*) - 1) & (size_t) argp) {
530 argp = (char *) ALIGN(argp, sizeof(void*));
531 }
532
533 #ifdef X86_WIN64
534 if ((*p_arg)->size > sizeof(ffi_arg)
535 || ((*p_arg)->type == FFI_TYPE_STRUCT
536 && ((*p_arg)->size != 1 && (*p_arg)->size != 2
537 && (*p_arg)->size != 4 && (*p_arg)->size != 8)))
538 {
539 z = sizeof(void *);
540 *p_argv = *(void **)argp;
541 }
542 else
543 #endif
544 {
545 z = (*p_arg)->size;
546
547 /* because we're little endian, this is what it turns into. */
548
549 *p_argv = (void*) argp;
550 }
551
552 p_argv++;
553 #ifdef X86_WIN64
554 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
555 #else
556 argp += z;
557 #endif
558 }
559
560 return;
561 }
562
563 #define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \
564 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
565 void* __fun = (void*)(FUN); \
566 void* __ctx = (void*)(CTX); \
567 *(unsigned char*) &__tramp[0] = 0x41; \
568 *(unsigned char*) &__tramp[1] = 0xbb; \
569 *(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \
570 *(unsigned char*) &__tramp[6] = 0x48; \
571 *(unsigned char*) &__tramp[7] = 0xb8; \
572 *(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \
573 *(unsigned char *) &__tramp[16] = 0x49; \
574 *(unsigned char *) &__tramp[17] = 0xba; \
575 *(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \
576 *(unsigned char *) &__tramp[26] = 0x41; \
577 *(unsigned char *) &__tramp[27] = 0xff; \
578 *(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \
579 }
580
581 /* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
582
583 #define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
584 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
585 unsigned int __fun = (unsigned int)(FUN); \
586 unsigned int __ctx = (unsigned int)(CTX); \
587 unsigned int __dis = __fun - (__ctx + 10); \
588 *(unsigned char*) &__tramp[0] = 0xb8; \
589 *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
590 *(unsigned char *) &__tramp[5] = 0xe9; \
591 *(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
592 }
593
594 #define FFI_INIT_TRAMPOLINE_THISCALL(TRAMP,FUN,CTX,SIZE) \
595 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
596 unsigned int __fun = (unsigned int)(FUN); \
597 unsigned int __ctx = (unsigned int)(CTX); \
598 unsigned int __dis = __fun - (__ctx + 49); \
599 unsigned short __size = (unsigned short)(SIZE); \
600 *(unsigned int *) &__tramp[0] = 0x8324048b; /* mov (%esp), %eax */ \
601 *(unsigned int *) &__tramp[4] = 0x4c890cec; /* sub $12, %esp */ \
602 *(unsigned int *) &__tramp[8] = 0x04890424; /* mov %ecx, 4(%esp) */ \
603 *(unsigned char*) &__tramp[12] = 0x24; /* mov %eax, (%esp) */ \
604 *(unsigned char*) &__tramp[13] = 0xb8; \
605 *(unsigned int *) &__tramp[14] = __size; /* mov __size, %eax */ \
606 *(unsigned int *) &__tramp[18] = 0x08244c8d; /* lea 8(%esp), %ecx */ \
607 *(unsigned int *) &__tramp[22] = 0x4802e8c1; /* shr $2, %eax ; dec %eax */ \
608 *(unsigned short*) &__tramp[26] = 0x0b74; /* jz 1f */ \
609 *(unsigned int *) &__tramp[28] = 0x8908518b; /* 2b: mov 8(%ecx), %edx */ \
610 *(unsigned int *) &__tramp[32] = 0x04c18311; /* mov %edx, (%ecx) ; add $4, %ecx */ \
611 *(unsigned char*) &__tramp[36] = 0x48; /* dec %eax */ \
612 *(unsigned short*) &__tramp[37] = 0xf575; /* jnz 2b ; 1f: */ \
613 *(unsigned char*) &__tramp[39] = 0xb8; \
614 *(unsigned int*) &__tramp[40] = __ctx; /* movl __ctx, %eax */ \
615 *(unsigned char *) &__tramp[44] = 0xe8; \
616 *(unsigned int*) &__tramp[45] = __dis; /* call __fun */ \
617 *(unsigned char*) &__tramp[49] = 0xc2; /* ret */ \
618 *(unsigned short*) &__tramp[50] = (__size + 8); /* ret (__size + 8) */ \
619 }
620
621 #define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \
622 { unsigned char *__tramp = (unsigned char*)(TRAMP); \
623 unsigned int __fun = (unsigned int)(FUN); \
624 unsigned int __ctx = (unsigned int)(CTX); \
625 unsigned int __dis = __fun - (__ctx + 10); \
626 unsigned short __size = (unsigned short)(SIZE); \
627 *(unsigned char*) &__tramp[0] = 0xb8; \
628 *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
629 *(unsigned char *) &__tramp[5] = 0xe8; \
630 *(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \
631 *(unsigned char *) &__tramp[10] = 0xc2; \
632 *(unsigned short*) &__tramp[11] = __size; /* ret __size */ \
633 }
634
635 /* the cif must already be prep'ed */
636
637 ffi_status
638 ffi_prep_closure_loc (ffi_closure* closure,
639 ffi_cif* cif,
640 void (*fun)(ffi_cif*,void*,void**,void*),
641 void *user_data,
642 void *codeloc)
643 {
644 #ifdef X86_WIN64
645 #define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE)
646 #define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0)
647 if (cif->abi == FFI_WIN64)
648 {
649 int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3);
650 FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0],
651 &ffi_closure_win64,
652 codeloc, mask);
653 /* make sure we can execute here */
654 }
655 #else
656 if (cif->abi == FFI_SYSV)
657 {
658 FFI_INIT_TRAMPOLINE (&closure->tramp[0],
659 &ffi_closure_SYSV,
660 (void*)codeloc);
661 }
662 #ifdef X86_WIN32
663 else if (cif->abi == FFI_THISCALL)
664 {
665 FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0],
666 &ffi_closure_THISCALL,
667 (void*)codeloc,
668 cif->bytes);
669 }
670 else if (cif->abi == FFI_STDCALL)
671 {
672 FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0],
673 &ffi_closure_STDCALL,
674 (void*)codeloc, cif->bytes);
675 }
676 #endif /* X86_WIN32 */
677 #endif /* !X86_WIN64 */
678 else
679 {
680 return FFI_BAD_ABI;
681 }
682
683 closure->cif = cif;
684 closure->user_data = user_data;
685 closure->fun = fun;
686
687 return FFI_OK;
688 }
689
690 /* ------- Native raw API support -------------------------------- */
691
692 #if !FFI_NO_RAW_API
693
694 ffi_status
695 ffi_prep_raw_closure_loc (ffi_raw_closure* closure,
696 ffi_cif* cif,
697 void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
698 void *user_data,
699 void *codeloc)
700 {
701 int i;
702
703 if (cif->abi != FFI_SYSV) {
704 #ifdef X86_WIN32
705 if (cif->abi != FFI_THISCALL)
706 #endif
707 return FFI_BAD_ABI;
708 }
709
710 /* we currently don't support certain kinds of arguments for raw
711 closures. This should be implemented by a separate assembly
712 language routine, since it would require argument processing,
713 something we don't do now for performance. */
714
715 for (i = cif->nargs-1; i >= 0; i--)
716 {
717 FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
718 FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
719 }
720
721 #ifdef X86_WIN32
722 if (cif->abi == FFI_SYSV)
723 {
724 #endif
725 FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
726 codeloc);
727 #ifdef X86_WIN32
728 }
729 else if (cif->abi == FFI_THISCALL)
730 {
731 FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0], &ffi_closure_raw_THISCALL,
732 codeloc, cif->bytes);
733 }
734 #endif
735 closure->cif = cif;
736 closure->user_data = user_data;
737 closure->fun = fun;
738
739 return FFI_OK;
740 }
741
742 static void
743 ffi_prep_args_raw(char *stack, extended_cif *ecif)
744 {
745 memcpy (stack, ecif->avalue, ecif->cif->bytes);
746 }
747
748 /* we borrow this routine from libffi (it must be changed, though, to
749 * actually call the function passed in the first argument. as of
750 * libffi-1.20, this is not the case.)
751 */
752
753 void
754 ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue)
755 {
756 extended_cif ecif;
757 void **avalue = (void **)fake_avalue;
758
759 ecif.cif = cif;
760 ecif.avalue = avalue;
761
762 /* If the return value is a struct and we don't have a return */
763 /* value address then we need to make one */
764
765 if ((rvalue == NULL) &&
766 (cif->rtype->type == FFI_TYPE_STRUCT))
767 {
768 ecif.rvalue = alloca(cif->rtype->size);
769 }
770 else
771 ecif.rvalue = rvalue;
772
773
774 switch (cif->abi)
775 {
776 #ifdef X86_WIN32
777 case FFI_SYSV:
778 case FFI_STDCALL:
779 ffi_call_win32(ffi_prep_args_raw, &ecif, cif->abi, cif->bytes, cif->flags,
780 ecif.rvalue, fn);
781 break;
782 case FFI_THISCALL:
783 case FFI_FASTCALL:
784 {
785 unsigned int abi = cif->abi;
786 unsigned int i, passed_regs = 0;
787
788 if (cif->flags == FFI_TYPE_STRUCT)
789 ++passed_regs;
790
791 for (i=0; i < cif->nargs && passed_regs < 2;i++)
792 {
793 size_t sz;
794
795 if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
796 || cif->arg_types[i]->type == FFI_TYPE_STRUCT)
797 continue;
798 sz = (cif->arg_types[i]->size + 3) & ~3;
799 if (sz == 0 || sz > 4)
800 continue;
801 ++passed_regs;
802 }
803 if (passed_regs < 2 && abi == FFI_FASTCALL)
804 cif->abi = abi = FFI_THISCALL;
805 if (passed_regs < 1 && abi == FFI_THISCALL)
806 cif->abi = abi = FFI_STDCALL;
807 ffi_call_win32(ffi_prep_args_raw, &ecif, abi, cif->bytes, cif->flags,
808 ecif.rvalue, fn);
809 }
810 break;
811 #else
812 case FFI_SYSV:
813 ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
814 ecif.rvalue, fn);
815 break;
816 #endif
817 default:
818 FFI_ASSERT(0);
819 break;
820 }
821 }
822
823 #endif
824
825 #endif /* !__x86_64__ || X86_WIN64 */
826