--------------------------------
[haskell-report.git] / report / modules.verb
1 %
2 % $Header: /home/cvs/root/haskell-report/report/modules.verb,v 1.17 2002/12/02 11:22:02 simonpj Exp $
3 %
4 %**<title>The Haskell 98 Report: Modules</title>
5 %*section 5
6 %**~header
7 \section{Modules} 
8 \label{modules} 
9 \index{module}
10
11 A module defines a collection of values, datatypes, type synonyms,
12 classes, etc.~(see Section~\ref{declarations}), in an environment created
13 by a set of {\em imports} (resources brought into scope from other modules).
14 It {\em exports} some of these resources, making them available to
15 other modules.  
16 We use the term {\em entity}\index{entity} to refer to
17 a value, type, or class defined in, imported into, or perhaps
18 exported from a module.
19
20 A \Haskell{} {\em program} is a collection of modules, one of
21 which, by convention, must be called @Main@\indexmodule{Main} and must
22 export the value @main@\indextt{main}.  The {\em value} of the program
23 is the value of the identifier @main@ in module @Main@,
24 which must be a computation of type $@IO@~\tau$ for some type $\tau$
25 (see Section~\ref{io}).  When the program is executed, the computation
26 @main@ is performed, and its result (of type $\tau$) is discarded.
27
28 Modules may reference other modules via explicit
29 @import@ declarations, each giving the name of a module to be
30 imported and specifying its entities to be imported.
31 Modules may be mutually recursive.
32
33 Modules are used for name-space control, and are not first class values.
34 A multi-module Haskell program can be converted into a single-module
35 program by giving each entity a unique name, changing all occurrences
36 to refer to the appropriate unique name, and then concatenating all the module
37 bodies\footnote{There are two minor exceptions to this statement.
38 First, @default@ declarations scope over a single module (Section~\ref{default-decls}).
39 Second, Rule 2 of the monomorphism restriction (Section~\ref{sect:monomorphism-restriction})
40 is affected by module boundaries.
41 }.  
42 For example, here is a three-module program:
43 \bprog
44 @
45   module Main where
46     import A
47     import B
48     main = A.f >> B.f
49
50   module A where
51     f = ...
52
53   module B where
54     f = ...
55 @
56 \eprog
57 It is equivalent to the following single-module program:
58 \bprog
59 @
60   module Main where
61     main = af >> bf
62
63     af = ...
64
65     bf = ...
66 @
67 \eprog
68 Because they are allowed to be mutually recursive,
69 modules allow a program to be partitioned freely without regard to
70 dependencies.
71
72 The name-space for modules themselves is flat, with each module being associated
73 with a unique module name (which are \Haskell{} identifiers
74 beginning with a capital letter; i.e.~"modid").  
75 There is one distinguished module, @Prelude@, which is imported into
76 all modules by default (see Section~\ref{standard-prelude}), plus a
77 set of standard library modules that may be imported as required
78 (see the \Haskell{} Library Report).
79
80 \subsection{Module Structure} 
81 \label{module-implementations}
82
83 A module defines a mutually
84 recursive scope containing declarations for value bindings, data
85 types, type synonyms, classes, etc. (see Section~\ref{declarations}).
86
87 @@@
88 module -> @module@ modid [exports] @where@ body
89        |  body
90 body   -> @{@ impdecls @;@ topdecls @}@
91         | @{@ impdecls  @}@
92         | @{@ topdecls @}@
93
94 modid        -> conid
95 impdecls     -> impdecl_1 @;@ ... @;@ impdecl_n         & (n>=1)
96 topdecls     -> topdecl_1 @;@ ... @;@ topdecl_n         & (n>=1)
97 @@@
98
99 \indexsyn{module}%
100 \indexsyn{body}%
101 \indexsyn{modid}%
102 \indexsyn{impdecls}%
103 \indexsyn{topdecls}%
104
105 A module 
106 begins with a header: the keyword
107 @module@, the module name, and a list of entities (enclosed in round
108 parentheses) to be exported.  The header is followed by a possibly-empty
109 list of @import@ declarations ("impdecls", Section~\ref{import}) that specify modules to be imported,
110 optionally restricting the imported bindings.  
111 This is followed by a possibly-empty list of top-level declarations ("topdecls", Section~\ref{declarations}).  
112
113 An abbreviated form of module, consisting only 
114 of\index{abbreviated module}
115 the module body, is permitted.  If this is used, the header is assumed to be
116 `@module Main(main) where@'.
117 If the first lexeme in the
118 abbreviated module is not a @{@, then the layout rule applies
119 for the top level of the module.
120
121 \subsection{Export Lists}
122 \label{export}
123 \index{export list}
124
125 @@@
126 exports  -> @(@ export_1 @,@ ... @,@ export_n [ @,@ ] @)@ & (n>=0)
127
128 export   -> qvar
129          |  qtycon [@(..)@ | @(@ cname_1 @,@ ... @,@ cname_n @)@] &  (n>=0)
130          |  qtycls [@(..)@ | @(@ var_1 @,@ ... @,@ var_n @)@] &  (n>=0)
131          |  @module@ modid
132
133 cname   -> var | con
134 @@@
135 \indexsyn{exports}%
136 \indexsyn{export}%
137
138 An {\em export list} identifies the entities to be exported by a
139 module declaration.  A module implementation may only export an entity
140 that it declares, or that it imports from some other module.  If the
141 export list is omitted, all values, types and classes defined in the
142 module are exported, {\em but not those that are imported}.
143
144 Entities in an export list may be named as follows:
145 \begin{enumerate}
146 \item
147 A value, field name, or class method, whether declared in
148 the module body or imported,
149 may be named by giving the name of the value as a "qvarid", which must be in scope.
150 Operators should be enclosed in parentheses to turn them into
151 "qvarid"'s.  
152
153 \item
154 An algebraic datatype "T"
155 \index{algebraic datatype}
156 declared by a @data@ or @newtype@ declaration may be named in one of
157 three ways: 
158 \begin{itemize}
159 \item
160 The form "T" names the type {\em but not the constructors or field names}.
161 The ability to export a type without its constructors allows the
162 construction of abstract datatypes (see Section~\ref{abstract-types}).
163 \item
164 The form $T@(@c_1@,@\ldots@,@c_n@)@$, 
165 names the type and some or all of its constructors and field names.  
166 % Restriction removed March 02:
167 % The subordinate names $c_i$ must not contain duplicates.  
168 \item
169 The abbreviated form "T@(..)@" names the type 
170 and all its constructors and field names that are currently in scope
171 (whether qualified or not).
172 \end{itemize}
173 In all cases, the (possibly-qualified) type constructor "T" must be in scope. 
174 The constructor and field names $c_i$ in the second form are unqualified;
175 one of these subordinate names is legal if and only if (a) it names a constructor
176 or field of "T", and (b) the constructor or field
177 is in scope in the module body {\em regardless of whether it is in scope
178 under a qualified or unqualified name}. For example, the following is 
179 legal
180 \bprog
181 @
182   module A( Mb.Maybe( Nothing, Just ) ) where
183     import qualified Maybe as Mb
184 @
185 \eprog
186 Data constructors cannot be named in export lists except as subordinate names, because
187 they cannot otherwise be distinguished from type constructors.
188
189 \item
190 A type synonym "T" declared by a
191 @type@ declaration may be named by the form "T", where "T" is in scope.
192 \index{type synonym}
193
194 \item
195 \index{class declaration}
196 A class $C$ with operations $f_1,\ldots,f_n$
197 declared in a @class@ declaration may be named in one of three ways:
198 \begin{itemize}
199 \item
200 The form "C" names the class {\em but not the class methods}.
201 \item
202 The form $C@(@f_1@,@\ldots@,@f_n@)@$, names the class and some or all
203 of its methods.  
204 % Restriction removed March 02:
205 % The subordinate names $f_i$ must not contain duplicates.
206 \item
207 The abbreviated form $C@(..)@$ names the class and all its methods
208 that are in scope (whether qualified or not).
209 \end{itemize}
210 In all cases, "C" must be in scope.  In the second form,
211 one of the (unqualified) subordinate names $f_i$ is legal if and only if (a) it names a
212 class method of "C", and (b) the class method 
213 is in scope in the module body regardless of whether it is in scope
214 under a qualified or unqualified name.
215
216 \item
217 The form ``@module M@'' names the set of all entities that are in
218 scope with both an unqualified name ``@e@'' and a qualified name
219 ``@M.e@''.
220 This set may be empty.
221 For example:
222 \bprog
223 @
224   module Queue( module Stack, enqueue, dequeue ) where
225       import Stack
226       ...
227 @
228 \eprog
229 Here the module @Queue@ uses the module name @Stack@ in its export
230 list to abbreviate all the entities imported from @Stack@.  
231
232 A module can name its own local definitions in its export
233 list using its own name in the ``@module M@'' syntax, because a local
234 declaration brings into scope both a qualified and unqualified name (Section~\ref{qualifiers}). 
235 For example:
236 \bprog
237 @
238   module Mod1( module Mod1, module Mod2 ) where
239   import Mod2
240   import Mod3
241 @
242 \eprog
243 Here module @Mod1@ exports all local definitions as well as those
244 imported from @Mod2@ but not those imported from @Mod3@.
245
246 It is an error to use @module M@ in an export list unless @M@ is 
247 the module bearing the export list, or @M@ is imported by at 
248 least one import declaration (qualified or unqualified).
249 \end{enumerate}
250 Exports lists are cumulative: the set of entities exported by an export
251 list is the union of the entities exported by the individual items of the list.
252
253 It makes no difference to an importing module how an entity was 
254 exported.  For example, a field name @f@ from data type @T@ may be exported individually
255 (@f@, item (1) above); or as an explicitly-named member of its data type (@T(f)@, item (2));
256 or as an implicitly-named member (@T(..)@, item(2)); or by exporting an entire
257 module (@module M@, item (5)).  
258
259 The {\em unqualified} names of the entities exported by a module must all be distinct
260 (within their respective namespace).  For example
261 \bprog
262 @
263   module A ( C.f, C.g, g, module B ) where   -- an invalid module
264   import B(f)
265   import qualified C(f,g)
266   g = f True
267 @
268 \eprog
269 There are no name clashes within module @A@ itself, 
270 but there are name clashes in the export list between @C.g@ and @g@
271 (assuming @C.g@ and @g@ are different entities -- remember, modules
272 can import each other recursively), and between @module B@ and @C.f@
273 (assuming @B.f@ and @C.f@ are different entities).
274
275 \subsection{Import Declarations}
276 \label{import}
277 \index{import declaration}
278
279 @@@
280 impdecl   -> @import@ [@qualified@] modid [@as@ modid] [impspec]
281           |     & (empty declaration)
282 impspec   -> @(@ import_1 @,@ ... @,@ import_n [ @,@ ] @)@ & (n>=0)
283              |  @hiding@ @(@ import_1 @,@ ... @,@ import_n [ @,@ ] @)@ & (n>=0)
284
285 import    -> var
286           |  tycon [ @(..)@ | @(@ cname_1 @,@ ... @,@ cname_n @)@] &  (n>=0)
287           |  tycls [@(..)@ | @(@ var_1 @,@ ... @,@ var_n @)@] & (n>=0)
288 cname     -> var | con
289 @@@
290 %             var
291 %          |  tycon
292 %          |  tycon @(..)@
293 %          |  tycon @(@ con_1 @,@ ... @,@ con_n@)@ & (n>=1)
294 %          |  tycls @(..)@
295 %          |  tycls @(@ var_1 @,@ ... @,@ var_n@)@ & (n>=0)
296 \indexsyn{impdecl}%
297 \indexsyn{impspec}%
298 \indexsyn{import}%
299 \indexsyn{cname}%
300
301 The entities exported by a module may be brought into scope in
302 another module with
303 an @import@
304 declaration at the beginning
305 of the module.  
306 The @import@ declaration names the module to be
307 imported
308 and optionally specifies the entities to be imported.
309 A single module may be imported by more than one @import@ declaration.  
310 Imported names serve as top level declarations: they scope over
311 the entire body of the module but may  be shadowed by local
312 non-top-level bindings.  
313
314 The effect of multiple @import@ declarations is strictly
315 cumulative: an entity is in scope if it is imported by any of the @import@
316 declarations in a module.  The ordering of import declarations is irrelevant.
317
318 Lexically, the terminal symbols ``@as@'', ``@qualified@'' and
319 ``@hiding@'' are each a "varid" rather than a "reservedid".  They have
320 special significance only in the context of an @import@ declaration;
321 they may also be used as variables.
322
323 \subsubsection{What is imported}
324 \label{whatisimported}
325
326 Exactly which entities are to be imported can be specified in one
327 of the following three ways:\nopagebreak[4]
328 \begin{enumerate}
329 \item
330 The imported entities can be specified explicitly
331 by listing them in parentheses.
332 Items in the list have the same form as those in export lists, except
333 qualifiers are not permitted and
334 the `@module@ "modid"' entity is not permitted.  When the @(..)@ form
335 of import is used for a type or class, the @(..)@ refers to all of the
336 constructors, methods, or field names exported from the module.
337
338 The list must name only
339 entities exported by the imported module.
340 The list may be empty, in which case nothing except the instances is
341 imported.
342
343 \item
344 Entities can be excluded by 
345 using the form @hiding(@"import_1 @,@ ... @,@ import_n"
346 @)@,\index{hiding} which
347 specifies that all entities exported by the named module should
348 be imported except for those named in the list.  Data constructors may be
349 named directly in hiding lists without being prefixed by the
350 associated type.  Thus, in
351 \bprog
352 @
353   import M hiding (C)
354 @
355 \eprog
356 any constructor, class, or type named @C@ is excluded.  In contrast,
357 using @C@ in an import list names only a class or type.  
358
359 It is an error to hide an entity that is not, in fact, exported by
360 the imported module.
361
362 \item
363 Finally, if "impspec" is omitted then 
364 all the entities exported by the specified module are imported.
365 \end{enumerate}
366
367 \subsubsection{Qualified import}
368 \index{qualified name}
369
370 For each entity imported under the rules of Section~\ref{whatisimported},
371 the top-level environment is extended.  If the import declaration used
372 the @qualified@ keyword, only the {\em qualified name} of the entity is
373 brought into scope.  If the @qualified@ keyword is omitted, then {\em both} the
374 qualified {\em and} unqualified name of the entity is brought into scope.
375 Section~\ref{qualifiers} describes qualified names in more detail.
376
377 The qualifier on the imported name is either the name of the imported module,
378 or the local alias given in the @as@ clause (Section~\ref{as-clause}) 
379 on the @import@ statement.
380 Hence, {\em the qualifier is not necessarily the name of the module in which the
381 entity was originally declared}.
382
383 The ability to exclude the unqualified names allows full programmer control of
384 the unqualified namespace: a locally defined entity can share the same
385 name as a qualified import:
386 \bprog
387 @
388   module Ring where
389   import qualified Prelude    -- All Prelude names must be qualified
390   import List( nub )
391
392   l1 + l2 = l1 Prelude.++ l2  -- This + differs from the one in the Prelude
393   l1 * l2 = nub (l1 + l2)     -- This * differs from the one in the Prelude
394
395   succ = (Prelude.+ 1)
396 @
397 \eprog
398
399
400 \subsubsection{Local aliases}
401 \label{as-clause}
402
403 Imported modules may be assigned a local alias in the importing module
404 using the @as@ clause.
405 For example, in
406 \bprog
407 @
408   import qualified VeryLongModuleName as C
409 @
410 \eprog
411 entities must be referenced using `@C.@' as a qualifier instead of
412 `@VeryLongModuleName.@'.  This also allows a different module to be substituted
413 for @VeryLongModuleName@ without changing the qualifiers used for the imported module.
414 It is legal for more than one module in scope to 
415 use the same qualifier, provided that all names can still be resolved unambiguously.
416 For example:
417 \bprog
418 @
419   module M where
420     import qualified Foo as A
421     import qualified Baz as A
422     x = A.f
423 @
424 \eprog
425 This module is legal provided only that @Foo@ and @Baz@ do not both export @f@.
426
427 An @as@ clause may also be used on an un-@qualified@ @import@ statement:
428 \bprog
429 @
430   import Foo as A(f)
431 @
432 \eprog
433 This declaration brings into scope @f@ and @A.f@.
434
435
436 \subsubsection{Examples}
437
438 To clarify the above import rules, suppose the module @A@ exports @x@ and @y@.
439 Then this table shows what names are brought into scope by the specified import statement:
440 \begin{center}
441 \begin{tabular}{|ll|}
442 \hline
443 Import declaration & Names brought into scope \\
444 \hline
445   @import A@                    & @x@, @y@, @A.x@, @A.y@ \\
446   @import A()@                  & (nothing)     \\
447   @import A(x)@                 & @x@, @A.x@ \\
448   @import qualified A@          & @A.x@, @A.y@ \\
449   @import qualified A()@        & (nothing) \\
450   @import qualified A(x)@       & @A.x@ \\
451   @import A hiding ()@          & @x@, @y@, @A.x@, @A.y@ \\
452   @import A hiding (x)@         & @y@, @A.y@ \\
453   @import qualified A hiding ()@        & @A.x@, @A.y@ \\
454   @import qualified A hiding (x)@       & @A.y@ \\
455   @import A as B@               & @x@, @y@, @B.x@, @B.y@ \\
456   @import A as B(x)@            & @x@, @B.x@ \\
457   @import qualified A as B@     & @B.x@, @B.y@ \\
458 \hline
459 \end{tabular}
460 \end{center}
461 In all cases, all instance declarations in scope in module @A@ are imported
462 (Section~\ref{import-instances}).
463
464 \subsection{Importing and Exporting Instance Declarations}
465 \label{import-instances}
466 \index{instance declaration!importing and exporting}
467
468 Instance declarations cannot be explicitly named on import or export
469 lists.  All instances in scope within a module are {\em always}
470 exported and any import brings {\em all} instances in from the
471 imported module.  Thus, an
472 instance declaration is in scope if and only if a chain of @import@
473 declarations leads to the module containing the instance declaration.
474
475 For example, @import M()@ does not bring
476 any new names in scope from module @M@, but does bring in any instances
477 visible in @M@.  A module whose only purpose is to provide instance
478 declarations can have an empty export list.  For example
479 \bprog
480 @
481   module MyInstances() where
482     instance Show (a -> b) where
483         show fn = "<<function>>"
484     instance Show (IO a) where
485         show io = "<<IO action>>"
486 @
487 \eprog
488
489 \subsection{Name Clashes and Closure}
490
491 \subsubsection{Qualified names}\index{qualified name}
492 \label{qualifiers}
493
494 A {\em qualified name} is written as "modid"@.@"name" (Section~\ref{ids}).
495 A qualified name is brought into scope:
496 \begin{itemize}
497 \item {\em By a top level declaration.}
498 A top-level declaration brings into scope both the unqualified {\em and}
499 the qualified name of the entity being defined.  Thus:
500 \bprog
501 @
502   module M where
503     f x = ...
504     g x = M.f x x
505 @
506 \eprog
507 is legal.  The {\em defining} occurrence must mention the {\em unqualified} name; therefore, it is
508 illegal to write
509 \bprog
510 @
511   module M where
512     M.f x = ...                 -- ILLEGAL
513     g x = let M.y = x+1 in ...  -- ILLEGAL
514 @
515 \eprog
516 \item {\em By an @import@ declaration.}  An @import@ declaration, whether @qualified@ or not,
517 always brings into scope the qualified name of the imported entity (Section~\ref{import}).
518 \end{itemize}
519 Qualifiers may also be applied to
520 names imported by an unqualified import; this allows a qualified
521 import to be replaced with an unqualified one without forcing changes
522 in the references to the imported names.  
523
524
525 \subsubsection{Name clashes}
526
527 If a module contains a bound occurrence of a name, such as @f@ or @A.f@,
528 it must be possible unambiguously to resolve which entity is thereby referred to;
529 that is, there must be only one binding for @f@ or @A.f@ respectively.
530
531 It is {\em not} an error for there to exist names that cannot be so 
532 resolved, provided that the program does not mention those names.  For example:
533 \bprog
534 @
535   module A where
536     import B
537     import C
538     tup = (b, c, d, x)
539   
540   module B( d, b, x, y ) where
541     import D
542     x = ...
543     y = ...
544     b = ...
545   
546   module C( d, c, x, y ) where
547     import D
548     x = ...
549     y = ...
550     c = ...
551
552   module D( d ) where
553     d = ...
554 @
555 \eprog
556 Consider the definition of @tup@.  
557 \begin{itemize}
558 \item The references to @b@ and @c@
559 can be unambiguously resolved to @b@ declared in @B@, and @c@ declared in
560 @C@ respectively.  
561 \item The reference to @d@ is unambiguously resolved to
562 @d@ declared in @D@.  In this case the same entity is brought into scope by two routes
563 (the import of @B@ and the import of @C@), and can be referred to in @A@ by the names
564 @d@, @B.d@, and @C.d@.
565 \item The reference to @x@ is ambiguous: it could mean @x@ declared in @B@, or @x@ 
566 declared in @C@.  The ambiguity could be fixed by replacing the reference to @x@ by
567 @B.x@ or @C.x@.
568 \item There is no reference to @y@, so it is not erroneous that distinct entities called
569 @y@ are exported by both @B@ and @C@.  An error is only reported if @y@ is actually mentioned.
570 \end{itemize}
571
572 The name occurring in a type signature or fixity declarations is
573 always unqualified, and unambiguously refers to another declaration in
574 the same declaration list (except that the fixity declaration for a
575 class method can occur at top level --- Section~\ref{fixity}). For example,
576 the following module is legal:
577 \bprog
578 @
579   module F where
580
581     sin :: Float -> Float
582     sin x = (x::Float)
583
584     f x = Prelude.sin (F.sin x)
585 @
586 \eprog
587 The local declaration for @sin@ is
588 legal, even though the Prelude function @sin@ is implicitly in
589 scope. The references to @Prelude.sin@ and @F.sin@ must both be qualified
590 to make it unambiguous which @sin@ is meant. However, the unqualified
591 name "@sin@" in the type signature in the first line of @F@ unambiguously
592 refers to the local declaration for @sin@.
593
594 \subsubsection{Closure}
595 \label{closure}
596 \index{closure}
597
598 Every module in a \Haskell{} program must be {\em closed}.  That is,
599 every name explicitly mentioned by the source code
600 must be either defined locally or imported from another module.
601 However, entities that the compiler requires for type checking or other
602 compile time analysis need not be imported if they are not mentioned
603 by name.  The \Haskell{} compilation system is responsible for finding
604 any information needed for compilation without the help of the
605 programmer.  That is, the import of a variable @x@ does not
606 require that the datatypes and classes in the signature of @x@ be
607 brought into the module along with @x@ unless these entities are
608 referenced by name in the user program.  The \Haskell{}
609 system silently imports any information that must accompany an
610 entity for type checking or any other purposes.  Such entities need
611 not even be explicitly exported: the following program is valid even though
612 @T@ does not escape @M1@:
613 \bprog
614 @
615   module M1(x) where
616     data T = T
617     x = T
618   
619   module M2 where
620     import M1(x)
621     y = x
622 @
623 \eprog
624 In this example, there is no way to supply an explicit type signature
625 for @y@ since @T@ is not in scope.
626 Whether or not @T@ is explicitly exported, module @M2@ knows
627 enough about @T@ to correctly type check the program.
628
629 The type of an exported entity is unaffected by non-exported type
630 synonyms.  For example, in
631 \bprog
632 @
633   module M(x) where
634     type T = Int
635     x :: T
636     x = 1
637 @
638 \eprog
639 the type of @x@ is both @T@ and @Int@; these are interchangeable even
640 when @T@ is not in scope.  That is, the definition of @T@ is available
641 to any module that encounters it whether or not the name @T@ is
642 in scope.  The only reason to export @T@ is to allow other modules to
643 refer it by name; the type checker finds the definition of @T@ if
644 needed whether or not it is exported.
645
646 \subsection{Standard Prelude}
647 \label{standard-prelude}
648 \index{standard prelude}
649 \index{libraries}
650 Many of the features of \Haskell{} are defined in \Haskell{}
651 itself as a library of standard datatypes, classes, and
652 functions, called the ``Standard Prelude.''  In
653 \Haskell{}, the Prelude is contained in the
654 module @Prelude@.\indexmodule{Prelude} There are also
655 many predefined library modules, which provide less frequently used
656 functions and types.  For example, arrays, 
657 tables, and most of the input/output are all part of the standard
658 libraries.    These are 
659 defined in the Haskell Library Report.
660 Separating
661 libraries from the Prelude has the advantage of reducing the size and
662 complexity of the Prelude, allowing it to be more easily assimilated,
663 and increasing the space of useful names available to the programmer.
664
665 Prelude and library modules differ from other modules in that
666 their semantics (but not their implementation) are a fixed part of the
667 \Haskell{} language definition.
668 This means, for example, that a compiler may optimize calls to
669 functions in the Prelude without consulting the source code
670 of the Prelude.
671
672 \subsubsection{The @Prelude@ Module}
673 \indexmodule{Prelude}
674 \index{Prelude!implicit import of}
675
676 The @Prelude@ module is imported automatically into all modules as if
677 by the statement `@import Prelude@', if and only if it is not imported
678 with an explicit @import@ declaration. This provision for explicit
679 import allows entities defined in the Prelude to be selectively imported,
680 just like those from any other module.
681
682 The semantics of the entities in @Prelude@ is specified by a reference
683 implementation of @Prelude@ written in \Haskell{}, given in
684 Appendix~\ref{stdprelude}.  Some datatypes (such as @Int@) and
685 functions (such as @Int@ addition) cannot be specified directly in
686 \Haskell{}.  Since the treatment of such entities depends on the
687 implementation, they are not formally defined in the appendix.
688 The implementation of
689 @Prelude@ is also incomplete in its treatment of tuples: there should
690 be an infinite family of tuples and their instance declarations, but the
691 implementation only gives a scheme.
692
693 Appendix~\ref{stdprelude} defines the module @Prelude@ using
694 several other modules: @PreludeList@, @PreludeIO@, and so on.
695 These modules are {\em not} part of Haskell 98, and they cannot be imported
696 separately.  They are simply 
697 there to help explain the structure of the @Prelude@ module; they
698 should be considered part of its implementation, not part of the language
699 definition.
700  
701 \subsubsection{Shadowing Prelude Names}
702 \label{std-prel-shadowing}
703
704 The rules about the Prelude have been cast so that it is
705 possible to use Prelude names for nonstandard purposes; however,
706 every module that does so must have an @import@ declaration
707 that makes this nonstandard usage explicit.  For example:
708 \bprog
709 @
710   module A( null, nonNull ) where
711     import Prelude hiding( null ) 
712     null, nonNull :: Int -> Bool
713     null    x = x == 0
714     nonNull x = not (null x)
715 @
716 \eprog
717 Module @A@ redefines @null@, and contains an unqualified reference to @null@
718 on the right hand side of @nonNull@. The latter would be ambiguous
719 without the @hiding(null)@ on the @import Prelude@ statement. Every
720 module that imports @A@ unqualified, and then makes an unqualified
721 reference to @null@ must also resolve the ambiguous use of @null@ just as
722 @A@ does. Thus there is little danger of accidentally shadowing Prelude
723 names.
724
725 It is possible to construct and use a different module to serve in
726 place of the Prelude.  Other than the fact that it is implicitly
727 imported, the Prelude is an ordinary \Haskell{} module; it is special
728 only in that some objects in the Prelude are referenced by special
729 syntactic constructs.  Redefining names used by the Prelude does not
730 affect the meaning of these special constructs.  For example, in
731 \bprog
732 @
733   module B where
734     import Prelude()
735     import MyPrelude
736     f x = (x,x)
737     g x = (,) x x
738     h x = [x] ++ []
739 @
740 \eprog
741 the explicit @import Prelude()@ declaration prevents the automatic
742 import of @Prelude@, while the declaration @import MyPrelude@ brings the
743 non-standard prelude into scope.  
744 The special syntax for tuples (such as @(x,x)@ and @(,)@) and lists
745 (such as @[x]@ and @[]@) continues to refer to the tuples and lists
746 defined by the standard @Prelude@;
747 there is no way to redefine the meaning of @[x]@, for example, in terms of a
748 different implementation of lists.
749 On the other hand, the use of @++@ is not special syntax, so it refers
750 to @++@ imported from @MyPrelude@.
751
752 It is not possible, however, to hide @instance@ declarations in the
753 @Prelude@.  For example, one cannot define a new instance for @Show Char@.
754
755 \subsection{Separate Compilation}
756 \index{separate compilation}
757 Depending on the \Haskell{} implementation used, separate compilation
758 of mutually recursive modules may require that imported modules contain
759 additional information so that they may be referenced before they are
760 compiled.  Explicit type signatures for all exported values may be
761 necessary to deal with mutual recursion.  The
762 precise details of separate compilation are not defined by this
763 report. 
764
765 \subsection{Abstract Datatypes}
766 \label{abstract-types}
767
768 \index{abstract datatype}
769 The ability to export a datatype without its constructors
770 allows the construction of abstract datatypes (ADTs).  For example,
771 an ADT for stacks could be defined as:
772 \bprog
773 @
774   module Stack( StkType, push, pop, empty ) where
775     data StkType a = EmptyStk | Stk a (StkType a)
776     push x s = Stk x s
777     pop (Stk _ s) = s
778     empty = EmptyStk
779 @
780 \eprog
781 Modules importing @Stack@ cannot construct values of type @StkType@
782 because they do not have access to the constructors of the type.
783 Instead, they must use @push@, @pop@, and @empty@ to construct such values.
784
785 It is also possible to build an ADT on top of an existing type by
786 using a @newtype@ declaration.  For example, stacks can be defined
787 with lists: 
788 \bprog
789 @
790   module Stack( StkType, push, pop, empty ) where
791     newtype StkType a = Stk [a]
792     push x (Stk s) = Stk (x:s)
793     pop (Stk (_:s)) = Stk s
794     empty = Stk []
795 @
796 \eprogNoSkip
797
798
799 %**~footer
800
801 % Local Variables: 
802 % mode: latex
803 % End: