SafeHaskell: Even more fixing to work with safe base
[ghc.git] / compiler / ghci / RtClosureInspect.hs
index f289b14..8e2c92c 100644 (file)
 -----------------------------------------------------------------------------
 
 module RtClosureInspect(
-  
-     cvObtainTerm,       -- :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term
+     cvObtainTerm,      -- :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term
+     cvReconstructType,
+     improveRTTIType,
 
      Term(..),
-     pprTerm, 
-     cPprTerm, 
-     cPprTermBase,
-     termType,
-     foldTerm, 
-     TermFold(..), 
-     idTermFold, 
-     idTermFoldM,
-     isFullyEvaluated, 
-     isPointed,
-     isFullyEvaluatedTerm,
-     mapTermType,
-     termTyVars
---     unsafeDeepSeq, 
- ) where 
+     isTerm, isSuspension, isPrim, isFun, isFunLike, isNewtypeWrap,
+     isFullyEvaluated, isFullyEvaluatedTerm,
+     termType, mapTermType, termTyVars,
+     foldTerm, TermFold(..), foldTermM, TermFoldM(..), idTermFold,
+     pprTerm, cPprTerm, cPprTermBase, CustomTermPrinter,
+
+--     unsafeDeepSeq,
+
+     Closure(..), getClosureData, ClosureType(..), isConstr, isIndirection
+ ) where
 
 #include "HsVersions.h"
 
 import ByteCodeItbls    ( StgInfoTable )
 import qualified ByteCodeItbls as BCI( StgInfoTable(..) )
-import ByteCodeLink     ( HValue )
-import HscTypes         ( HscEnv )
+import HscTypes
+import Linker
 
-import DataCon          
-import Type             
-import TcRnMonad        ( TcM, initTcPrintErrors, ioToTcRn, recoverM, writeMutVar )
+import DataCon
+import Type
+import qualified Unify as U
+import TypeRep         -- I know I know, this is cheating
+import Var
+import TcRnMonad
 import TcType
 import TcMType
 import TcUnify
-import TcGadt
-import TyCon           
-import Var
-import Name 
+import TcEnv
+
+import TyCon
+import Name
 import VarEnv
-import OccName
+import Util
 import VarSet
-import {-#SOURCE#-} TcRnDriver ( tcRnRecoverDataCon )
-
-import TysPrim         
+import TysPrim
 import PrelNames
 import TysWiredIn
-
+import DynFlags
+import Outputable as Ppr
+import FastString
 import Constants        ( wORD_SIZE )
-import Outputable
-import Maybes
-import Panic
-import FiniteMap
-
-import GHC.Arr          ( Array(..) )
-import GHC.Ptr          ( Ptr(..), castPtr )
-import GHC.Exts         
-import GHC.Int          ( Int32(..),  Int64(..) )
-import GHC.Word         ( Word32(..), Word64(..) )
+import GHC.Arr.Unsafe   ( Array(..) )
+import GHC.Exts
+import GhcIO ( IO(..) )
 
+import StaticFlags( opt_PprStyle_Debug )
 import Control.Monad
 import Data.Maybe
 import Data.Array.Base
-import Data.List        ( partition, nub )
-import Foreign.Storable
-
-import IO
+import Data.Ix
+import Data.List
+import qualified Data.Sequence as Seq
+import Data.Monoid
+import Data.Sequence (viewl, ViewL(..))
+import Foreign
+import System.IO.Unsafe
 
 ---------------------------------------------
 -- * A representation of semi evaluated Terms
 ---------------------------------------------
-{-
-  A few examples in this representation:
-
-  > Just 10 = Term Data.Maybe Data.Maybe.Just (Just 10) [Term Int I# (10) "10"]
-
-  > (('a',_,_),_,('b',_,_)) = 
-      Term ((Char,b,c),d,(Char,e,f)) (,,) (('a',_,_),_,('b',_,_))
-          [ Term (Char, b, c) (,,) ('a',_,_) [Term Char C# "a", Suspension, Suspension]
-          , Suspension
-          , Term (Char, e, f) (,,) ('b',_,_) [Term Char C# "b", Suspension, Suspension]]
--}
 
-data Term = Term { ty        :: Type 
-                 , dc        :: DataCon 
+data Term = Term { ty        :: RttiType
+                 , dc        :: Either String DataCon
+                               -- Carries a text representation if the datacon is
+                               -- not exported by the .hi file, which is the case 
+                               -- for private constructors in -O0 compiled libraries
                  , val       :: HValue 
                  , subTerms  :: [Term] }
 
-          | Prim { ty        :: Type
-                 , value     :: String }
+          | Prim { ty        :: RttiType
+                 , value     :: [Word] }
 
           | Suspension { ctype    :: ClosureType
-                       , mb_ty    :: Maybe Type
+                       , ty       :: RttiType
                        , val      :: HValue
                        , bound_to :: Maybe Name   -- Useful for printing
                        }
-
+          | NewtypeWrap{       -- At runtime there are no newtypes, and hence no
+                               -- newtype constructors. A NewtypeWrap is just a
+                               -- made-up tag saying "heads up, there used to be
+                               -- a newtype constructor here".
+                         ty           :: RttiType
+                       , dc           :: Either String DataCon
+                       , wrapped_term :: Term }
+          | RefWrap    {       -- The contents of a reference
+                         ty           :: RttiType
+                       , wrapped_term :: Term }
+
+isTerm, isSuspension, isPrim, isFun, isFunLike, isNewtypeWrap :: Term -> Bool
 isTerm Term{} = True
 isTerm   _    = False
 isSuspension Suspension{} = True
 isSuspension      _       = False
 isPrim Prim{} = True
 isPrim   _    = False
+isNewtypeWrap NewtypeWrap{} = True
+isNewtypeWrap _             = False
+
+isFun Suspension{ctype=Fun} = True
+isFun _ = False
 
-termType t@(Suspension {}) = mb_ty t
-termType t = Just$ ty t
+isFunLike s@Suspension{ty=ty} = isFun s || isFunTy ty
+isFunLike _ = False
+
+termType :: Term -> RttiType
+termType t = ty t
 
 isFullyEvaluatedTerm :: Term -> Bool
 isFullyEvaluatedTerm Term {subTerms=tt} = all isFullyEvaluatedTerm tt
-isFullyEvaluatedTerm Suspension {}      = False
 isFullyEvaluatedTerm Prim {}            = True
+isFullyEvaluatedTerm NewtypeWrap{wrapped_term=t} = isFullyEvaluatedTerm t
+isFullyEvaluatedTerm RefWrap{wrapped_term=t}     = isFullyEvaluatedTerm t
+isFullyEvaluatedTerm _                  = False
 
 instance Outputable (Term) where
- ppr = head . cPprTerm cPprTermBase
+ ppr t | Just doc <- cPprTerm cPprTermBase t = doc
+       | otherwise = panic "Outputable Term instance"
 
 -------------------------------------------------------------------------
 -- Runtime Closure Datatype and functions for retrieving closure related stuff
@@ -131,21 +141,24 @@ data ClosureType = Constr
                  | AP 
                  | PAP 
                  | Indirection Int 
-                 | Other Int
+                 | MutVar Int
+                 | MVar   Int
+                 | Other  Int
  deriving (Show, Eq)
 
 data Closure = Closure { tipe         :: ClosureType 
                        , infoPtr      :: Ptr ()
                        , infoTable    :: StgInfoTable
                        , ptrs         :: Array Int HValue
-                       , nonPtrs      :: ByteArray# 
+                       , nonPtrs      :: [Word]
                        }
 
 instance Outputable ClosureType where
   ppr = text . show 
 
-#include "../includes/ClosureTypes.h"
+#include "../includes/rts/storage/ClosureTypes.h"
 
+aP_CODE, pAP_CODE :: Int
 aP_CODE = AP
 pAP_CODE = PAP
 #undef AP
@@ -155,31 +168,47 @@ getClosureData :: a -> IO Closure
 getClosureData a =
    case unpackClosure# a of 
      (# iptr, ptrs, nptrs #) -> do
-           itbl <- peek (Ptr iptr)
+           let iptr'
+                | ghciTablesNextToCode =
+                   Ptr iptr
+                | otherwise =
+                   -- the info pointer we get back from unpackClosure#
+                   -- is to the beginning of the standard info table,
+                   -- but the Storable instance for info tables takes
+                   -- into account the extra entry pointer when
+                   -- !ghciTablesNextToCode, so we must adjust here:
+                   Ptr iptr `plusPtr` negate wORD_SIZE
+           itbl <- peek iptr'
            let tipe = readCType (BCI.tipe itbl)
-               elems = BCI.ptrs itbl 
-               ptrsList = Array 0 (fromIntegral$ elems) ptrs
-           ptrsList `seq` return (Closure tipe (Ptr iptr) itbl ptrsList nptrs)
+               elems = fromIntegral (BCI.ptrs itbl)
+               ptrsList = Array 0 (elems - 1) elems ptrs
+               nptrs_data = [W# (indexWordArray# nptrs i)
+                              | I# i <- [0.. fromIntegral (BCI.nptrs itbl)-1] ]
+           ASSERT(elems >= 0) return ()
+           ptrsList `seq` 
+            return (Closure tipe (Ptr iptr) itbl ptrsList nptrs_data)
 
 readCType :: Integral a => a -> ClosureType
-readCType i
+readCType i 
  | i >= CONSTR && i <= CONSTR_NOCAF_STATIC = Constr
  | i >= FUN    && i <= FUN_STATIC          = Fun
- | i >= THUNK  && i < THUNK_SELECTOR       = Thunk (fromIntegral i)
+ | i >= THUNK  && i < THUNK_SELECTOR       = Thunk i'
  | i == THUNK_SELECTOR                     = ThunkSelector
  | i == BLACKHOLE                          = Blackhole
- | i >= IND    && i <= IND_STATIC          = Indirection (fromIntegral i)
- | fromIntegral i == aP_CODE               = AP
+ | i >= IND    && i <= IND_STATIC          = Indirection i'
+ | i' == aP_CODE                           = AP
  | i == AP_STACK                           = AP
- | fromIntegral i == pAP_CODE              = PAP
- | otherwise                               = Other (fromIntegral i)
-
-isConstr, isIndirection :: ClosureType -> Bool
+ | i' == pAP_CODE                          = PAP
+ | i == MUT_VAR_CLEAN || i == MUT_VAR_DIRTY= MutVar i'
+ | i == MVAR_CLEAN    || i == MVAR_DIRTY   = MVar i'
+ | otherwise                               = Other  i'
+  where i' = fromIntegral i
+isConstr, isIndirection, isThunk :: ClosureType -> Bool
 isConstr Constr = True
 isConstr    _   = False
 
 isIndirection (Indirection _) = True
---isIndirection ThunkSelector = True
 isIndirection _ = False
 
 isThunk (Thunk _)     = True
@@ -193,438 +222,984 @@ isFullyEvaluated a = do
   case tipe closure of
     Constr -> do are_subs_evaluated <- amapM isFullyEvaluated (ptrs closure)
                  return$ and are_subs_evaluated
-    otherwise -> return False
+    _      -> return False
   where amapM f = sequence . amap' f
 
-amap' f (Array i0 i arr#) = map (\(I# i#) -> case indexArray# arr# i# of
-                                   (# e #) -> f e)
-                                [0 .. i - i0]
-
 -- TODO: Fix it. Probably the otherwise case is failing, trace/debug it
 {-
 unsafeDeepSeq :: a -> b -> b
 unsafeDeepSeq = unsafeDeepSeq1 2
  where unsafeDeepSeq1 0 a b = seq a $! b
-       unsafeDeepSeq1 i a b                -- 1st case avoids infinite loops for non reducible thunks
+       unsafeDeepSeq1 i a b   -- 1st case avoids infinite loops for non reducible thunks
         | not (isConstr tipe) = seq a $! unsafeDeepSeq1 (i-1) a b     
      -- | unsafePerformIO (isFullyEvaluated a) = b
         | otherwise = case unsafePerformIO (getClosureData a) of
                         closure -> foldl' (flip unsafeDeepSeq) b (ptrs closure)
         where tipe = unsafePerformIO (getClosureType a)
 -}
-isPointed :: Type -> Bool
-isPointed t | Just (t, _) <- splitTyConApp_maybe t = not$ isUnliftedTypeKind (tyConKind t)
-isPointed _ = True
-
-#define MKDECODER(offset,cons,builder) (offset, show$ cons (builder addr 0#))
-
-extractUnboxed  :: [Type] -> ByteArray# -> [String]
-extractUnboxed tt ba = helper tt (byteArrayContents# ba)
-   where helper :: [Type] -> Addr# -> [String]
-         helper (t:tt) addr 
-          | Just ( tycon,_) <- splitTyConApp_maybe t 
-          =  let (offset, txt) = decode tycon addr
-                 (I# word_offset)   = offset*wORD_SIZE
-             in txt : helper tt (plusAddr# addr word_offset)
-          | otherwise 
-          = -- ["extractUnboxed.helper: Urk. I got a " ++ showSDoc (ppr t)]
-            panic$ "extractUnboxed.helper: Urk. I got a " ++ showSDoc (ppr t)
-         helper [] addr = []
-         decode :: TyCon -> Addr# -> (Int, String)
-         decode t addr                             
-           | t == charPrimTyCon   = MKDECODER(1,C#,indexCharOffAddr#)
-           | t == intPrimTyCon    = MKDECODER(1,I#,indexIntOffAddr#)
-           | t == wordPrimTyCon   = MKDECODER(1,W#,indexWordOffAddr#)
-           | t == floatPrimTyCon  = MKDECODER(1,F#,indexFloatOffAddr#)
-           | t == doublePrimTyCon = MKDECODER(2,D#,indexDoubleOffAddr#)
-           | t == int32PrimTyCon  = MKDECODER(1,I32#,indexInt32OffAddr#)
-           | t == word32PrimTyCon = MKDECODER(1,W32#,indexWord32OffAddr#)
-           | t == int64PrimTyCon  = MKDECODER(2,I64#,indexInt64OffAddr#)
-           | t == word64PrimTyCon = MKDECODER(2,W64#,indexWord64OffAddr#)
-           | t == addrPrimTyCon   = MKDECODER(1,I#,(\x off-> addr2Int# (indexAddrOffAddr# x off)))  --OPT Improve the presentation of addresses
-           | t == stablePtrPrimTyCon  = (1, "<stablePtr>")
-           | t == stableNamePrimTyCon = (1, "<stableName>")
-           | t == statePrimTyCon      = (1, "<statethread>")
-           | t == realWorldTyCon      = (1, "<realworld>")
-           | t == threadIdPrimTyCon   = (1, "<ThreadId>")
-           | t == weakPrimTyCon       = (1, "<Weak>")
-           | t == arrayPrimTyCon      = (1,"<array>")
-           | t == byteArrayPrimTyCon  = (1,"<bytearray>")
-           | t == mutableArrayPrimTyCon = (1, "<mutableArray>")
-           | t == mutableByteArrayPrimTyCon = (1, "<mutableByteArray>")
-           | t == mutVarPrimTyCon= (1, "<mutVar>")
-           | t == mVarPrimTyCon  = (1, "<mVar>")
-           | t == tVarPrimTyCon  = (1, "<tVar>")
-           | otherwise = (1, showSDoc (char '<' <> ppr t <> char '>')) 
-                 -- We cannot know the right offset in the otherwise case, so 1 is just a wild dangerous guess!
-           -- TODO: Improve the offset handling in decode (make it machine dependant)
 
 -----------------------------------
 -- * Traversals for Terms
 -----------------------------------
+type TermProcessor a b = RttiType -> Either String DataCon -> HValue -> [a] -> b
+
+data TermFold a = TermFold { fTerm        :: TermProcessor a a
+                           , fPrim        :: RttiType -> [Word] -> a
+                           , fSuspension  :: ClosureType -> RttiType -> HValue
+                                            -> Maybe Name -> a
+                           , fNewtypeWrap :: RttiType -> Either String DataCon
+                                            -> a -> a
+                           , fRefWrap     :: RttiType -> a -> a
+                           }
+
 
-data TermFold a = TermFold { fTerm :: Type -> DataCon -> HValue -> [a] -> a
-                           , fPrim :: Type -> String -> a
-                           , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a
+data TermFoldM m a =
+                   TermFoldM {fTermM        :: TermProcessor a (m a)
+                            , fPrimM        :: RttiType -> [Word] -> m a
+                            , fSuspensionM  :: ClosureType -> RttiType -> HValue
+                                             -> Maybe Name -> m a
+                            , fNewtypeWrapM :: RttiType -> Either String DataCon
+                                            -> a -> m a
+                            , fRefWrapM     :: RttiType -> a -> m a
                            }
 
 foldTerm :: TermFold a -> Term -> a
 foldTerm tf (Term ty dc v tt) = fTerm tf ty dc v (map (foldTerm tf) tt)
 foldTerm tf (Prim ty    v   ) = fPrim tf ty v
 foldTerm tf (Suspension ct ty v b) = fSuspension tf ct ty v b
+foldTerm tf (NewtypeWrap ty dc t)  = fNewtypeWrap tf ty dc (foldTerm tf t)
+foldTerm tf (RefWrap ty t)         = fRefWrap tf ty (foldTerm tf t)
+
+
+foldTermM :: Monad m => TermFoldM m a -> Term -> m a
+foldTermM tf (Term ty dc v tt) = mapM (foldTermM tf) tt >>= fTermM tf ty dc v
+foldTermM tf (Prim ty    v   ) = fPrimM tf ty v
+foldTermM tf (Suspension ct ty v b) = fSuspensionM tf ct ty v b
+foldTermM tf (NewtypeWrap ty dc t)  = foldTermM tf t >>=  fNewtypeWrapM tf ty dc
+foldTermM tf (RefWrap ty t)         = foldTermM tf t >>= fRefWrapM tf ty
 
 idTermFold :: TermFold Term
 idTermFold = TermFold {
               fTerm = Term,
               fPrim = Prim,
-              fSuspension = Suspension
+              fSuspension  = Suspension,
+              fNewtypeWrap = NewtypeWrap,
+              fRefWrap = RefWrap
                       }
-idTermFoldM :: Monad m => TermFold (m Term)
-idTermFoldM = TermFold {
-              fTerm       = \ty dc v tt -> sequence tt >>= return . Term ty dc v,
-              fPrim       = (return.). Prim,
-              fSuspension = (((return.).).). Suspension
-                       }
 
+mapTermType :: (RttiType -> Type) -> Term -> Term
 mapTermType f = foldTerm idTermFold {
           fTerm       = \ty dc hval tt -> Term (f ty) dc hval tt,
-          fSuspension = \ct mb_ty hval n ->
-                          Suspension ct (fmap f mb_ty) hval n }
-
+          fSuspension = \ct ty hval n ->
+                          Suspension ct (f ty) hval n,
+          fNewtypeWrap= \ty dc t -> NewtypeWrap (f ty) dc t,
+          fRefWrap    = \ty t -> RefWrap (f ty) t}
+
+mapTermTypeM :: Monad m =>  (RttiType -> m Type) -> Term -> m Term
+mapTermTypeM f = foldTermM TermFoldM {
+          fTermM       = \ty dc hval tt -> f ty >>= \ty' -> return $ Term ty'  dc hval tt,
+          fPrimM       = (return.) . Prim,
+          fSuspensionM = \ct ty hval n ->
+                          f ty >>= \ty' -> return $ Suspension ct ty' hval n,
+          fNewtypeWrapM= \ty dc t -> f ty >>= \ty' -> return $ NewtypeWrap ty' dc t,
+          fRefWrapM    = \ty t -> f ty >>= \ty' -> return $ RefWrap ty' t}
+
+termTyVars :: Term -> TyVarSet
 termTyVars = foldTerm TermFold {
             fTerm       = \ty _ _ tt   -> 
                           tyVarsOfType ty `plusVarEnv` concatVarEnv tt,
-            fSuspension = \_ mb_ty _ _ -> 
-                          maybe emptyVarEnv tyVarsOfType mb_ty,
-            fPrim       = \ _ _ -> emptyVarEnv }
+            fSuspension = \_ ty _ _ -> tyVarsOfType ty,
+            fPrim       = \ _ _ -> emptyVarEnv,
+            fNewtypeWrap= \ty _ t -> tyVarsOfType ty `plusVarEnv` t,
+            fRefWrap    = \ty t -> tyVarsOfType ty `plusVarEnv` t}
     where concatVarEnv = foldr plusVarEnv emptyVarEnv
+
 ----------------------------------
 -- Pretty printing of terms
 ----------------------------------
 
-app_prec::Int
-app_prec = 10
+type Precedence        = Int
+type TermPrinter       = Precedence -> Term ->   SDoc
+type TermPrinterM m    = Precedence -> Term -> m SDoc
+
+app_prec,cons_prec, max_prec ::Int
+max_prec  = 10
+app_prec  = max_prec
+cons_prec = 5 -- TODO Extract this info from GHC itself
+
+pprTerm :: TermPrinter -> TermPrinter
+pprTerm y p t | Just doc <- pprTermM (\p -> Just . y p) p t = doc
+pprTerm _ _ _ = panic "pprTerm"
+
+pprTermM, ppr_termM, pprNewtypeWrap :: Monad m => TermPrinterM m -> TermPrinterM m
+pprTermM y p t = pprDeeper `liftM` ppr_termM y p t
+
+ppr_termM y p Term{dc=Left dc_tag, subTerms=tt} = do
+  tt_docs <- mapM (y app_prec) tt
+  return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> pprDeeperList fsep tt_docs)
+  
+ppr_termM y p Term{dc=Right dc, subTerms=tt} 
+{-  | dataConIsInfix dc, (t1:t2:tt') <- tt  --TODO fixity
+  = parens (ppr_term1 True t1 <+> ppr dc <+> ppr_term1 True ppr t2) 
+    <+> hsep (map (ppr_term1 True) tt) 
+-} -- TODO Printing infix constructors properly
+  | null sub_terms_to_show
+  = return (ppr dc)
+  | otherwise 
+  = do { tt_docs <- mapM (y app_prec) sub_terms_to_show
+       ; return $ cparen (p >= app_prec) $
+         sep [ppr dc, nest 2 (pprDeeperList fsep tt_docs)] }
+  where
+    sub_terms_to_show  -- Don't show the dictionary arguments to 
+                       -- constructors unless -dppr-debug is on
+      | opt_PprStyle_Debug = tt
+      | otherwise = dropList (dataConTheta dc) tt
+
+ppr_termM y p t@NewtypeWrap{} = pprNewtypeWrap y p t
+ppr_termM y p RefWrap{wrapped_term=t}  = do
+  contents <- y app_prec t
+  return$ cparen (p >= app_prec) (text "GHC.Prim.MutVar#" <+> contents)
+  -- The constructor name is wired in here ^^^ for the sake of simplicity.
+  -- I don't think mutvars are going to change in a near future.
+  -- In any case this is solely a presentation matter: MutVar# is
+  -- a datatype with no constructors, implemented by the RTS
+  -- (hence there is no way to obtain a datacon and print it).
+ppr_termM _ _ t = ppr_termM1 t
+
+
+ppr_termM1 :: Monad m => Term -> m SDoc
+ppr_termM1 Prim{value=words, ty=ty} = 
+    return$ text$ repPrim (tyConAppTyCon ty) words
+ppr_termM1 Suspension{ty=ty, bound_to=Nothing} = 
+    return (char '_' <+> ifPprDebug (text "::" <> ppr ty))
+ppr_termM1 Suspension{ty=ty, bound_to=Just n}
+--  | Just _ <- splitFunTy_maybe ty = return$ ptext (sLit("<function>")
+  | otherwise = return$ parens$ ppr n <> text "::" <> ppr ty
+ppr_termM1 Term{}        = panic "ppr_termM1 - Term"
+ppr_termM1 RefWrap{}     = panic "ppr_termM1 - RefWrap"
+ppr_termM1 NewtypeWrap{} = panic "ppr_termM1 - NewtypeWrap"
+
+pprNewtypeWrap y p NewtypeWrap{ty=ty, wrapped_term=t}
+  | Just (tc,_) <- tcSplitTyConApp_maybe ty
+  , ASSERT(isNewTyCon tc) True
+  , Just new_dc <- tyConSingleDataCon_maybe tc = do 
+             real_term <- y max_prec t
+             return $ cparen (p >= app_prec) (ppr new_dc <+> real_term)
+pprNewtypeWrap _ _ _ = panic "pprNewtypeWrap"
+
+-------------------------------------------------------
+-- Custom Term Pretty Printers
+-------------------------------------------------------
+
+-- We can want to customize the representation of a 
+--  term depending on its type. 
+-- However, note that custom printers have to work with
+--  type representations, instead of directly with types.
+-- We cannot use type classes here, unless we employ some 
+--  typerep trickery (e.g. Weirich's RepLib tricks),
+--  which I didn't. Therefore, this code replicates a lot
+--  of what type classes provide for free.
+
+type CustomTermPrinter m = TermPrinterM m
+                         -> [Precedence -> Term -> (m (Maybe SDoc))]
+
+-- | Takes a list of custom printers with a explicit recursion knot and a term, 
+-- and returns the output of the first succesful printer, or the default printer
+cPprTerm :: Monad m => CustomTermPrinter m -> Term -> m SDoc
+cPprTerm printers_ = go 0 where
+  printers = printers_ go
+  go prec t = do
+    let default_ = Just `liftM` pprTermM go prec t
+        mb_customDocs = [pp prec t | pp <- printers] ++ [default_]
+    Just doc <- firstJustM mb_customDocs
+    return$ cparen (prec>app_prec+1) doc
 
-pprTerm :: Int -> Term -> SDoc
-pprTerm p Term{dc=dc, subTerms=tt} 
-{-  | dataConIsInfix dc, (t1:t2:tt') <- tt 
-  = parens (pprTerm1 True t1 <+> ppr dc <+> pprTerm1 True ppr t2) 
-    <+> hsep (map (pprTerm1 True) tt) 
--}
-  | null tt   = ppr dc
-  | otherwise = cparen (p >= app_prec) 
-                       (ppr dc <+> sep (map (pprTerm app_prec) tt))
-
-  where fixity   = undefined 
-
-pprTerm _ t = pprTerm1 t
-
-pprTerm1 Prim{value=value} = text value 
-pprTerm1 t@Term{} = pprTerm 0 t 
-pprTerm1 Suspension{bound_to=Nothing} =  char '_' -- <> ppr ct <> char '_'
-pprTerm1 Suspension{mb_ty=Just ty, bound_to=Just n}
-  | Just _ <- splitFunTy_maybe ty = ptext SLIT("<function>")
-  | otherwise = parens$ ppr n <> text "::" <> ppr ty 
-
-
-cPprTerm :: forall m. Monad m => ((Int->Term->m SDoc)->[Int->Term->m (Maybe SDoc)]) -> Term -> m SDoc
-cPprTerm custom = go 0 where
-  go prec t@Term{subTerms=tt, dc=dc} = do
-    let mb_customDocs = map (($t) . ($prec)) (custom go) :: [m (Maybe SDoc)]    
-    first_success <- firstJustM mb_customDocs
-    case first_success of
-      Just doc -> return$ cparen (prec>app_prec+1) doc
---    | dataConIsInfix dc, (t1:t2:tt') <- tt =
-      Nothing  -> do pprSubterms <- mapM (go (app_prec+1)) tt
-                     return$ cparen (prec >= app_prec) 
-                                    (ppr dc <+> sep pprSubterms)
-  go _ t = return$ pprTerm1 t
   firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just)
   firstJustM [] = return Nothing
 
-cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[Int->Term->m (Maybe SDoc)]
-cPprTermBase pprP =
-  [ 
-    ifTerm isTupleDC            (\_ -> liftM (parens . hcat . punctuate comma) 
-                                 . mapM (pprP (-1)) . subTerms)
-  , ifTerm (isDC consDataCon)   (\ p Term{subTerms=[h,t]} -> doList p h t)
-  , ifTerm (isDC intDataCon)    (coerceShow$ \(a::Int)->a)
-  , ifTerm (isDC charDataCon)   (coerceShow$ \(a::Char)->a)
---  , ifTerm (isDC wordDataCon) (coerceShow$ \(a::Word)->a)
-  , ifTerm (isDC floatDataCon)  (coerceShow$ \(a::Float)->a)
-  , ifTerm (isDC doubleDataCon) (coerceShow$ \(a::Double)->a)
-  , ifTerm isIntegerDC          (coerceShow$ \(a::Integer)->a)
-  ] 
-     where ifTerm pred f p t = if pred t then liftM Just (f p t) else return Nothing
-           isIntegerDC Term{dc=dc} = 
-              dataConName dc `elem` [ smallIntegerDataConName
-                                    , largeIntegerDataConName] 
-           isTupleDC Term{dc=dc} = dc `elem` snd (unzip (elems boxedTupleArr))
-           isDC a_dc Term{dc=dc} = a_dc == dc
-           coerceShow f _ = return . text . show . f . unsafeCoerce# . val
-           --TODO pprinting of list terms is not lazy
-           doList p h t = do
-               let elems = h : getListTerms t
-                   isConsLast = termType(last elems) /= termType h
-               print_elems <- mapM (pprP 5) elems
-               return$ if isConsLast
-                     then cparen (p >= 5) . hsep . punctuate (space<>colon) 
-                           $ print_elems
-                     else brackets (hcat$ punctuate comma print_elems)
-
-                where Just a /= Just b = not (a `coreEqType` b)
-                      _      /=   _    = True
-                      getListTerms Term{subTerms=[h,t]} = h : getListTerms t
-                      getListTerms t@Term{subTerms=[]}  = []
-                      getListTerms t@Suspension{}       = [t]
-                      getListTerms t = pprPanic "getListTerms" (ppr t)
+-- Default set of custom printers. Note that the recursion knot is explicit
+cPprTermBase :: forall m. Monad m => CustomTermPrinter m
+cPprTermBase y =
+  [ ifTerm (isTupleTy.ty) (\_p -> liftM (parens . hcat . punctuate comma) 
+                                      . mapM (y (-1))
+                                      . subTerms)
+  , ifTerm (\t -> isTyCon listTyCon (ty t) && subTerms t `lengthIs` 2)
+           ppr_list
+  , ifTerm (isTyCon intTyCon    . ty) ppr_int
+  , ifTerm (isTyCon charTyCon   . ty) ppr_char
+  , ifTerm (isTyCon floatTyCon  . ty) ppr_float
+  , ifTerm (isTyCon doubleTyCon . ty) ppr_double
+  , ifTerm (isIntegerTy         . ty) ppr_integer
+  ]
+ where 
+   ifTerm :: (Term -> Bool)
+          -> (Precedence -> Term -> m SDoc)
+          -> Precedence -> Term -> m (Maybe SDoc)
+   ifTerm pred f prec t@Term{}
+       | pred t    = Just `liftM` f prec t
+   ifTerm _ _ _ _  = return Nothing
+
+   isTupleTy ty    = fromMaybe False $ do 
+     (tc,_) <- tcSplitTyConApp_maybe ty 
+     return (isBoxedTupleTyCon tc)
+
+   isTyCon a_tc ty = fromMaybe False $ do 
+     (tc,_) <- tcSplitTyConApp_maybe ty
+     return (a_tc == tc)
+
+   isIntegerTy ty = fromMaybe False $ do
+     (tc,_) <- tcSplitTyConApp_maybe ty
+     return (tyConName tc == integerTyConName)
+
+   ppr_int, ppr_char, ppr_float, ppr_double, ppr_integer 
+      :: Precedence -> Term -> m SDoc
+   ppr_int     _ v = return (Ppr.int     (unsafeCoerce# (val v)))
+   ppr_char    _ v = return (Ppr.char '\'' <> Ppr.char (unsafeCoerce# (val v)) <> Ppr.char '\'')
+   ppr_float   _ v = return (Ppr.float   (unsafeCoerce# (val v)))
+   ppr_double  _ v = return (Ppr.double  (unsafeCoerce# (val v)))
+   ppr_integer _ v = return (Ppr.integer (unsafeCoerce# (val v)))
+
+   --Note pprinting of list terms is not lazy
+   ppr_list :: Precedence -> Term -> m SDoc
+   ppr_list p (Term{subTerms=[h,t]}) = do
+       let elems      = h : getListTerms t
+           isConsLast = not(termType(last elems) `eqType` termType h)
+          is_string  = all (isCharTy . ty) elems
+
+       print_elems <- mapM (y cons_prec) elems
+       if is_string
+        then return (Ppr.doubleQuotes (Ppr.text (unsafeCoerce# (map val elems))))
+        else if isConsLast
+        then return $ cparen (p >= cons_prec) 
+                    $ pprDeeperList fsep 
+                    $ punctuate (space<>colon) print_elems
+        else return $ brackets 
+                    $ pprDeeperList fcat
+                    $ punctuate comma print_elems
+
+        where getListTerms Term{subTerms=[h,t]} = h : getListTerms t
+              getListTerms Term{subTerms=[]}    = []
+              getListTerms t@Suspension{}       = [t]
+              getListTerms t = pprPanic "getListTerms" (ppr t)
+   ppr_list _ _ = panic "doList"
+
+
+repPrim :: TyCon -> [Word] -> String
+repPrim t = rep where 
+   rep x
+    | t == charPrimTyCon   = show (build x :: Char)
+    | t == intPrimTyCon    = show (build x :: Int)
+    | t == wordPrimTyCon   = show (build x :: Word)
+    | t == floatPrimTyCon  = show (build x :: Float)
+    | t == doublePrimTyCon = show (build x :: Double)
+    | t == int32PrimTyCon  = show (build x :: Int32)
+    | t == word32PrimTyCon = show (build x :: Word32)
+    | t == int64PrimTyCon  = show (build x :: Int64)
+    | t == word64PrimTyCon = show (build x :: Word64)
+    | t == addrPrimTyCon   = show (nullPtr `plusPtr` build x)
+    | t == stablePtrPrimTyCon  = "<stablePtr>"
+    | t == stableNamePrimTyCon = "<stableName>"
+    | t == statePrimTyCon      = "<statethread>"
+    | t == realWorldTyCon      = "<realworld>"
+    | t == threadIdPrimTyCon   = "<ThreadId>"
+    | t == weakPrimTyCon       = "<Weak>"
+    | t == arrayPrimTyCon      = "<array>"
+    | t == byteArrayPrimTyCon  = "<bytearray>"
+    | t == mutableArrayPrimTyCon = "<mutableArray>"
+    | t == mutableByteArrayPrimTyCon = "<mutableByteArray>"
+    | t == mutVarPrimTyCon= "<mutVar>"
+    | t == mVarPrimTyCon  = "<mVar>"
+    | t == tVarPrimTyCon  = "<tVar>"
+    | otherwise = showSDoc (char '<' <> ppr t <> char '>')
+    where build ww = unsafePerformIO $ withArray ww (peek . castPtr) 
+--   This ^^^ relies on the representation of Haskell heap values being 
+--   the same as in a C array. 
 
 -----------------------------------
 -- Type Reconstruction
 -----------------------------------
+{-
+Type Reconstruction is type inference done on heap closures.
+The algorithm walks the heap generating a set of equations, which
+are solved with syntactic unification.
+A type reconstruction equation looks like:
 
--- The Type Reconstruction monad
-type TR a = TcM a
+  <datacon reptype>  =  <actual heap contents> 
 
-runTR :: HscEnv -> TR Term -> IO Term
-runTR hsc_env c = do 
-  mb_term <- initTcPrintErrors hsc_env iNTERACTIVE c
-  case mb_term of 
-    Nothing -> panic "Can't unify"
-    Just term -> return term
+The full equation set is generated by traversing all the subterms, starting
+from a given term.
 
-trIO :: IO a -> TR a 
-trIO = liftTcM . ioToTcRn
+The only difficult part is that newtypes are only found in the lhs of equations.
+Right hand sides are missing them. We can either (a) drop them from the lhs, or 
+(b) reconstruct them in the rhs when possible. 
 
-addConstraint :: TcType -> TcType -> TR ()
-addConstraint t1 t2  = congruenceNewtypes t1 t2 >>= uncurry unifyType 
+The function congruenceNewtypes takes a shot at (b)
+-}
 
-{-
-   A parallel fold over two Type values, 
- compensating for missing newtypes on both sides. 
- This is necessary because newtypes are not present 
- in runtime, but since sometimes there is evidence 
- available we do our best to reconstruct them. 
-   Evidence can come from DataCon signatures or 
- from compile-time type inference.
-   I am using the words congruence and rewriting 
- because what we are doing here is an approximation 
- of unification modulo a set of equations, which would 
- come from newtype definitions. These should be the 
- equality coercions seen in System Fc. Rewriting 
- is performed, taking those equations as rules, 
- before launching unification.
-
-   It doesn't make sense to rewrite everywhere, 
- or we would end up with all newtypes. So we rewrite 
- only in presence of evidence.
-   The lhs comes from the heap structure of ptrs,nptrs. 
-   The rhs comes from a DataCon type signature. 
- Rewriting in the rhs is restricted to the result type.
 
-   Note that it is very tricky to make this 'rewriting'
- work with the unification implemented by TcM, where
- substitutions are 'inlined'. The order in which 
- constraints are unified is vital for this (or I am 
- using TcM wrongly).
--}
-congruenceNewtypes ::  TcType -> TcType -> TcM (TcType,TcType)
-congruenceNewtypes = go True
-  where 
-   go rewriteRHS lhs rhs  
- -- TyVar lhs inductive case
-    | Just tv <- getTyVar_maybe lhs 
-    = recoverM (return (lhs,rhs)) $ do  
-         Indirect ty_v <- readMetaTyVar tv
-         (lhs', rhs') <- go rewriteRHS ty_v rhs
-         writeMutVar (metaTvRef tv) (Indirect lhs')
-         return (lhs, rhs')
- -- TyVar rhs inductive case
-    | Just tv <- getTyVar_maybe rhs 
-    = recoverM (return (lhs,rhs)) $ do  
-         Indirect ty_v <- readMetaTyVar tv
-         (lhs', rhs') <- go rewriteRHS lhs ty_v
-         writeMutVar (metaTvRef tv) (Indirect rhs')
-         return (lhs', rhs)
--- FunTy inductive case
-    | Just (l1,l2) <- splitFunTy_maybe lhs
-    , Just (r1,r2) <- splitFunTy_maybe rhs
-    = do (l2',r2') <- go True l2 r2
-         (l1',r1') <- go False l1 r1
-         return (mkFunTy l1' l2', mkFunTy r1' r2')
--- TyconApp Inductive case; this is the interesting bit.
-    | Just (tycon_l, args_l) <- splitNewTyConApp_maybe lhs
-    , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs = do
+-- A (non-mutable) tau type containing
+-- existentially quantified tyvars.
+--    (since GHC type language currently does not support
+--     existentials, we leave these variables unquantified)
+type RttiType = Type
+
+-- An incomplete type as stored in GHCi:
+--  no polymorphism: no quantifiers & all tyvars are skolem.
+type GhciType = Type
+
 
-      let (tycon_l',args_l') = if isNewTyCon tycon_r && not(isNewTyCon tycon_l)
-                                then (tycon_r, rewrite tycon_r lhs)
-                                else (tycon_l, args_l)
-          (tycon_r',args_r') = if rewriteRHS && isNewTyCon tycon_l && not(isNewTyCon tycon_r)
-                                then (tycon_l, rewrite tycon_l rhs)
-                                else (tycon_r, args_r)
-      (args_l'', args_r'') <- unzip `liftM` zipWithM (go rewriteRHS) args_l' args_r'
-      return (mkTyConApp tycon_l' args_l'', mkTyConApp tycon_r' args_r'') 
+-- The Type Reconstruction monad
+--------------------------------
+type TR a = TcM a
 
-    | otherwise = return (lhs,rhs)
+runTR :: HscEnv -> TR a -> IO a
+runTR hsc_env thing = do
+  mb_val <- runTR_maybe hsc_env thing
+  case mb_val of
+    Nothing -> error "unable to :print the term"
+    Just x  -> return x
 
-    where rewrite newtyped_tc lame_tipe
-           | (tvs, tipe) <- newTyConRep newtyped_tc 
-           = case tcUnifyTys (const BindMe) [tipe] [lame_tipe] of
-               Just subst -> substTys subst (map mkTyVarTy tvs)
-               otherwise  -> panic "congruenceNewtypes: Can't unify a newtype"
+runTR_maybe :: HscEnv -> TR a -> IO (Maybe a)
+runTR_maybe hsc_env = fmap snd . initTc hsc_env HsSrcFile False  iNTERACTIVE
 
-newVar :: Kind -> TR TcTyVar
-newVar = liftTcM . newFlexiTyVar
+traceTR :: SDoc -> TR ()
+traceTR = liftTcM . traceOptTcRn Opt_D_dump_rtti
 
+
+-- Semantically different to recoverM in TcRnMonad 
+-- recoverM retains the errors in the first action,
+--  whereas recoverTc here does not
+recoverTR :: TR a -> TR a -> TR a
+recoverTR recover thing = do 
+  (_,mb_res) <- tryTcErrs thing
+  case mb_res of 
+    Nothing  -> recover
+    Just res -> return res
+
+trIO :: IO a -> TR a 
+trIO = liftTcM . liftIO
+
+liftTcM :: TcM a -> TR a
 liftTcM = id
 
--- | Returns the instantiated type scheme ty', and the substitution sigma 
---   such that sigma(ty') = ty 
-instScheme :: Type -> TR (TcType, TvSubst)
-instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do
-   (tvs',theta,ty') <- tcInstType (mapM tcInstTyVar) ty
-   return (ty', zipTopTvSubst tvs' (mkTyVarTys tvs))
-
-cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term
-cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do
-   tv <- liftM mkTyVarTy (newVar argTypeKind)
-   case mb_ty of
-     Nothing -> go tv tv hval >>= zonkTerm
-     Just ty | isMonomorphic ty -> go ty ty hval >>= zonkTerm
-     Just ty -> do 
-              (ty',rev_subst) <- instScheme (sigmaType ty)
-              addConstraint tv ty'
-              term <- go tv tv hval >>= zonkTerm
-              --restore original Tyvars
-              return$ mapTermType (substTy rev_subst) term
+newVar :: Kind -> TR TcType
+newVar = liftTcM . newFlexiTyVarTy
+
+instTyVars :: [TyVar] -> TR ([TcTyVar], [TcType], TvSubst)
+-- Instantiate fresh mutable type variables from some TyVars
+-- This function preserves the print-name, which helps error messages
+instTyVars = liftTcM . tcInstTyVars
+
+type RttiInstantiation = [(TcTyVar, TyVar)]
+   -- Associates the typechecker-world meta type variables 
+   -- (which are mutable and may be refined), to their 
+   -- debugger-world RuntimeUnk counterparts.
+   -- If the TcTyVar has not been refined by the runtime type
+   -- elaboration, then we want to turn it back into the
+   -- original RuntimeUnk
+
+-- | Returns the instantiated type scheme ty', and the 
+--   mapping from new (instantiated) -to- old (skolem) type variables
+instScheme :: QuantifiedType -> TR (TcType, RttiInstantiation)
+instScheme (tvs, ty) 
+  = liftTcM $ do { (tvs', _, subst) <- tcInstTyVars tvs
+                 ; let rtti_inst = [(tv',tv) | (tv',tv) <- tvs' `zip` tvs]
+                 ; return (substTy subst ty, rtti_inst) }
+
+applyRevSubst :: RttiInstantiation -> TR ()
+-- Apply the *reverse* substitution in-place to any un-filled-in
+-- meta tyvars.  This recovers the original debugger-world variable
+-- unless it has been refined by new information from the heap
+applyRevSubst pairs = liftTcM (mapM_ do_pair pairs)
+  where
+    do_pair (tc_tv, rtti_tv)
+      = do { tc_ty <- zonkTcTyVar tc_tv
+           ; case tcGetTyVar_maybe tc_ty of
+               Just tv | isMetaTyVar tv -> writeMetaTyVar tv (mkTyVarTy rtti_tv)
+               _                        -> return () }
+
+-- Adds a constraint of the form t1 == t2
+-- t1 is expected to come from walking the heap
+-- t2 is expected to come from a datacon signature
+-- Before unification, congruenceNewtypes needs to
+-- do its magic.
+addConstraint :: TcType -> TcType -> TR ()
+addConstraint actual expected = do
+    traceTR (text "add constraint:" <+> fsep [ppr actual, equals, ppr expected])
+    recoverTR (traceTR $ fsep [text "Failed to unify", ppr actual,
+                                    text "with", ppr expected]) $
+      do { (ty1, ty2) <- congruenceNewtypes actual expected
+         ; _  <- captureConstraints $ unifyType ty1 ty2
+         ; return () }
+     -- TOMDO: what about the coercion?
+     -- we should consider family instances
+
+
+-- Type & Term reconstruction
+------------------------------
+cvObtainTerm :: HscEnv -> Int -> Bool -> RttiType -> HValue -> IO Term
+cvObtainTerm hsc_env max_depth force old_ty hval = runTR hsc_env $ do
+  -- we quantify existential tyvars as universal,
+  -- as this is needed to be able to manipulate
+  -- them properly
+   let quant_old_ty@(old_tvs, old_tau) = quantifyType old_ty
+       sigma_old_ty = mkForAllTys old_tvs old_tau
+   traceTR (text "Term reconstruction started with initial type " <> ppr old_ty)
+   term <-
+     if null old_tvs
+      then do
+        term  <- go max_depth sigma_old_ty sigma_old_ty hval
+        term' <- zonkTerm term
+        return $ fixFunDictionaries $ expandNewtypes term'
+      else do
+              (old_ty', rev_subst) <- instScheme quant_old_ty
+              my_ty <- newVar argTypeKind
+              when (check1 quant_old_ty) (traceTR (text "check1 passed") >>
+                                          addConstraint my_ty old_ty')
+              term  <- go max_depth my_ty sigma_old_ty hval
+              new_ty <- zonkTcType (termType term)
+              if isMonomorphic new_ty || check2 (quantifyType new_ty) quant_old_ty
+                 then do
+                      traceTR (text "check2 passed")
+                      addConstraint new_ty old_ty'
+                      applyRevSubst rev_subst
+                      zterm' <- zonkTerm term
+                      return ((fixFunDictionaries . expandNewtypes) zterm')
+                 else do
+                      traceTR (text "check2 failed" <+> parens
+                                       (ppr term <+> text "::" <+> ppr new_ty))
+                      -- we have unsound types. Replace constructor types in
+                      -- subterms with tyvars
+                      zterm' <- mapTermTypeM
+                                 (\ty -> case tcSplitTyConApp_maybe ty of
+                                           Just (tc, _:_) | tc /= funTyCon
+                                               -> newVar argTypeKind
+                                           _   -> return ty)
+                                 term
+                      zonkTerm zterm'
+   traceTR (text "Term reconstruction completed." $$
+            text "Term obtained: " <> ppr term $$
+            text "Type obtained: " <> ppr (termType term))
+   return term
     where 
-  go tv ty a = do 
-    let monomorphic = not(isTyVarTy tv)   -- This is a convention. The ancestor tests for
-                                         -- monomorphism and passes a type instead of a tv
+
+  go :: Int -> Type -> Type -> HValue -> TcM Term
+   -- [SPJ May 11] I don't understand the difference between my_ty and old_ty
+
+  go max_depth _ _ _ | seq max_depth False = undefined
+  go 0 my_ty _old_ty a = do
+    traceTR (text "Gave up reconstructing a term after" <>
+                  int max_depth <> text " steps")
+    clos <- trIO $ getClosureData a
+    return (Suspension (tipe clos) my_ty a Nothing)
+  go max_depth my_ty old_ty a = do
+    let monomorphic = not(isTyVarTy my_ty)   
+    -- This ^^^ is a convention. The ancestor tests for
+    -- monomorphism and passes a type instead of a tv
     clos <- trIO $ getClosureData a
     case tipe clos of
 -- Thunks we may want to force
--- NB. this won't attempt to force a BLACKHOLE.  Even with :force, we never
--- force blackholes, because it would almost certainly result in deadlock,
--- and showing the '_' is more useful.
-      t | isThunk t && force -> seq a $ go tv ty a
--- We always follow indirections 
-      Indirection _ -> go tv ty $! (ptrs clos ! 0)
+      t | isThunk t && force -> traceTR (text "Forcing a " <> text (show t)) >>
+                                seq a (go (pred max_depth) my_ty old_ty a)
+-- Blackholes are indirections iff the payload is not TSO or BLOCKING_QUEUE.  So we
+-- treat them like indirections; if the payload is TSO or BLOCKING_QUEUE, we'll end up
+-- showing '_' which is what we want.
+      Blackhole -> do traceTR (text "Following a BLACKHOLE")
+                      appArr (go max_depth my_ty old_ty) (ptrs clos) 0
+-- We always follow indirections
+      Indirection i -> do traceTR (text "Following an indirection" <> parens (int i) )
+                          go max_depth my_ty old_ty $! (ptrs clos ! 0)
+-- We also follow references
+      MutVar _ | Just (tycon,[world,contents_ty]) <- tcSplitTyConApp_maybe old_ty
+             -> do
+                  -- Deal with the MutVar# primitive
+                  -- It does not have a constructor at all, 
+                  -- so we simulate the following one
+                  -- MutVar# :: contents_ty -> MutVar# s contents_ty
+         traceTR (text "Following a MutVar")
+         contents_tv <- newVar liftedTypeKind
+         contents <- trIO$ IO$ \w -> readMutVar# (unsafeCoerce# a) w
+         ASSERT(isUnliftedTypeKind $ typeKind my_ty) return ()
+         (mutvar_ty,_) <- instScheme $ quantifyType $ mkFunTy 
+                            contents_ty (mkTyConApp tycon [world,contents_ty])
+         addConstraint (mkFunTy contents_tv my_ty) mutvar_ty
+         x <- go (pred max_depth) contents_tv contents_ty contents
+         return (RefWrap my_ty x)
+
  -- The interesting case
       Constr -> do
-        m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos)
-        case m_dc of
-          Nothing -> panic "Can't find the DataCon for a term"
-          Just dc -> do 
-            let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc)
-                subTtypes  = matchSubTypes dc ty
-                (subTtypesP, subTtypesNP) = partition isPointed subTtypes
-            subTermTvs <- sequence
-                 [ if isMonomorphic t then return t else (mkTyVarTy `fmap` newVar k)
-                   | (t,k) <- zip subTtypesP (map typeKind subTtypesP)]
-            -- It is vital for newtype reconstruction that the unification step is done
-            --     right here, _before_ the subterms are RTTI reconstructed.
-            when (not monomorphic) $ do
-                  let myType = mkFunTys (reOrderTerms subTermTvs subTtypesNP subTtypes) tv
-                  instScheme(dataConRepType dc) >>= addConstraint myType . fst
-            subTermsP <- sequence $ drop extra_args -- all extra arguments are pointed
-                  [ appArr (go tv t) (ptrs clos) i
-                   | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP]
-            let unboxeds   = extractUnboxed subTtypesNP (nonPtrs clos)
-                subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds)      
-                subTerms   = reOrderTerms subTermsP subTermsNP (drop extra_args subTtypes)
-            return (Term tv dc a subTerms)
--- The otherwise case: can be a Thunk,AP,PAP,etc.
-      otherwise -> 
-         return (Suspension (tipe clos) (Just tv) a Nothing)
-
--- Access the array of pointers and recurse down. Needs to be done with
--- care of no introducing a thunk! or go will fail to do its job 
-  appArr f arr (I# i#) = case arr of 
-                 (Array _ _ ptrs#) -> case indexArray# ptrs# i# of 
-                       (# e #) -> f e
+        traceTR (text "entering a constructor " <>
+                      if monomorphic
+                        then parens (text "already monomorphic: " <> ppr my_ty)
+                        else Ppr.empty)
+        Right dcname <- dataConInfoPtrToName (infoPtr clos)
+        (_,mb_dc)    <- tryTcErrs (tcLookupDataCon dcname)
+        case mb_dc of
+          Nothing -> do -- This can happen for private constructors compiled -O0
+                        -- where the .hi descriptor does not export them
+                        -- In such case, we return a best approximation:
+                        --  ignore the unpointed args, and recover the pointeds
+                        -- This preserves laziness, and should be safe.
+                      traceTR (text "Nothing" <+> ppr dcname)
+                       let tag = showSDoc (ppr dcname)
+                       vars     <- replicateM (length$ elems$ ptrs clos) 
+                                              (newVar liftedTypeKind)
+                       subTerms <- sequence [appArr (go (pred max_depth) tv tv) (ptrs clos) i 
+                                              | (i, tv) <- zip [0..] vars]
+                       return (Term my_ty (Left ('<' : tag ++ ">")) a subTerms)
+          Just dc -> do
+            traceTR (text "Just" <+> ppr dc)
+            subTtypes <- getDataConArgTys dc my_ty
+            let (subTtypesP, subTtypesNP) = partition isPtrType subTtypes
+            subTermsP <- sequence
+                  [ appArr (go (pred max_depth) ty ty) (ptrs clos) i
+                  | (i,ty) <- zip [0..] subTtypesP]
+            let unboxeds   = extractUnboxed subTtypesNP clos
+                subTermsNP = zipWith Prim subTtypesNP unboxeds
+                subTerms   = reOrderTerms subTermsP subTermsNP subTtypes
+            return (Term my_ty (Right dc) a subTerms)
 
-  matchSubTypes dc ty
-    | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) 
-    , null (dataConExTyVars dc)  --TODO Handle the case of extra existential tyvars
-    = dataConInstArgTys dc ty_args
-
-    | otherwise = dataConRepArgTys dc
+-- The otherwise case: can be a Thunk,AP,PAP,etc.
+      tipe_clos ->
+         return (Suspension tipe_clos my_ty a Nothing)
 
--- This is used to put together pointed and nonpointed subterms in the 
---  correct order.
+  -- put together pointed and nonpointed subterms in the
+  --  correct order.
   reOrderTerms _ _ [] = []
   reOrderTerms pointed unpointed (ty:tys) 
-   | isPointed ty = ASSERT2(not(null pointed)
-                           , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed))
-                    head pointed : reOrderTerms (tail pointed) unpointed tys
+   | isPtrType ty = ASSERT2(not(null pointed)
+                            , ptext (sLit "reOrderTerms") $$ 
+                                        (ppr pointed $$ ppr unpointed))
+                    let (t:tt) = pointed in t : reOrderTerms tt unpointed tys
    | otherwise    = ASSERT2(not(null unpointed)
-                           , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed))
-                    head unpointed : reOrderTerms pointed (tail unpointed) tys
-
-isMonomorphic ty | isForAllTy ty = False
-isMonomorphic ty = (isEmptyVarSet . tyVarsOfType) ty
-
-zonkTerm :: Term -> TcM Term
-zonkTerm = foldTerm idTermFoldM {
-              fTerm = \ty dc v tt -> sequence tt      >>= \tt ->
-                                     zonkTcType ty    >>= \ty' ->
-                                     return (Term ty' dc v tt)
-             ,fSuspension = \ct ty v b -> fmapMMaybe zonkTcType ty >>= \ty ->
-                                          return (Suspension ct ty v b)}  
-
-
--- Is this defined elsewhere?
--- Generalize the type: find all free tyvars and wrap in the appropiate ForAll.
-sigmaType ty = mkForAllTys (varSetElems$ tyVarsOfType (dropForAlls ty)) ty
-
+                           , ptext (sLit "reOrderTerms") $$ 
+                                       (ppr pointed $$ ppr unpointed))
+                    let (t:tt) = unpointed in t : reOrderTerms pointed tt tys
+
+  -- insert NewtypeWraps around newtypes
+  expandNewtypes = foldTerm idTermFold { fTerm = worker } where
+   worker ty dc hval tt
+     | Just (tc, args) <- tcSplitTyConApp_maybe ty
+     , isNewTyCon tc
+     , wrapped_type    <- newTyConInstRhs tc args
+     , Just dc'        <- tyConSingleDataCon_maybe tc
+     , t'              <- worker wrapped_type dc hval tt
+     = NewtypeWrap ty (Right dc') t'
+     | otherwise = Term ty dc hval tt
+
+
+   -- Avoid returning types where predicates have been expanded to dictionaries.
+  fixFunDictionaries = foldTerm idTermFold {fSuspension = worker} where
+      worker ct ty hval n | isFunTy ty = Suspension ct (dictsView ty) hval n
+                          | otherwise  = Suspension ct ty hval n
+
+
+-- Fast, breadth-first Type reconstruction
+------------------------------------------
+cvReconstructType :: HscEnv -> Int -> GhciType -> HValue -> IO (Maybe Type)
+cvReconstructType hsc_env max_depth old_ty hval = runTR_maybe hsc_env $ do
+   traceTR (text "RTTI started with initial type " <> ppr old_ty)
+   let sigma_old_ty@(old_tvs, _) = quantifyType old_ty
+   new_ty <-
+       if null old_tvs
+        then return old_ty
+        else do
+          (old_ty', rev_subst) <- instScheme sigma_old_ty
+          my_ty <- newVar argTypeKind
+          when (check1 sigma_old_ty) (traceTR (text "check1 passed") >>
+                                      addConstraint my_ty old_ty')
+          search (isMonomorphic `fmap` zonkTcType my_ty)
+                 (\(ty,a) -> go ty a)
+                 (Seq.singleton (my_ty, hval))
+                 max_depth
+          new_ty <- zonkTcType my_ty
+          if isMonomorphic new_ty || check2 (quantifyType new_ty) sigma_old_ty
+            then do
+                 traceTR (text "check2 passed" <+> ppr old_ty $$ ppr new_ty)
+                 addConstraint my_ty old_ty'
+                 applyRevSubst rev_subst
+                 zonkRttiType new_ty
+            else traceTR (text "check2 failed" <+> parens (ppr new_ty)) >>
+                 return old_ty
+   traceTR (text "RTTI completed. Type obtained:" <+> ppr new_ty)
+   return new_ty
+    where
+--  search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m ()
+  search _ _ _ 0 = traceTR (text "Failed to reconstruct a type after " <>
+                                int max_depth <> text " steps")
+  search stop expand l d =
+    case viewl l of 
+      EmptyL  -> return ()
+      x :< xx -> unlessM stop $ do
+                  new <- expand x
+                  search stop expand (xx `mappend` Seq.fromList new) $! (pred d)
+
+   -- returns unification tasks,since we are going to want a breadth-first search
+  go :: Type -> HValue -> TR [(Type, HValue)]
+  go my_ty a = do
+    traceTR (text "go" <+> ppr my_ty)
+    clos <- trIO $ getClosureData a
+    case tipe clos of
+      Blackhole -> appArr (go my_ty) (ptrs clos) 0 -- carefully, don't eval the TSO
+      Indirection _ -> go my_ty $! (ptrs clos ! 0)
+      MutVar _ -> do
+         contents <- trIO$ IO$ \w -> readMutVar# (unsafeCoerce# a) w
+         tv'   <- newVar liftedTypeKind
+         world <- newVar liftedTypeKind
+         addConstraint my_ty (mkTyConApp mutVarPrimTyCon [world,tv'])
+         return [(tv', contents)]
+      Constr -> do
+        Right dcname <- dataConInfoPtrToName (infoPtr clos)
+        traceTR (text "Constr1" <+> ppr dcname)
+        (_,mb_dc)    <- tryTcErrs (tcLookupDataCon dcname)
+        case mb_dc of
+          Nothing-> do
+                     --  TODO: Check this case
+            forM [0..length (elems $ ptrs clos)] $ \i -> do
+                        tv <- newVar liftedTypeKind
+                        return$ appArr (\e->(tv,e)) (ptrs clos) i
+
+          Just dc -> do
+            arg_tys <- getDataConArgTys dc my_ty
+           traceTR (text "Constr2" <+> ppr dcname <+> ppr arg_tys)
+            return $ [ appArr (\e-> (ty,e)) (ptrs clos) i
+                     | (i,ty) <- zip [0..] (filter isPtrType arg_tys)]
+      _ -> return []
+
+-- Compute the difference between a base type and the type found by RTTI
+-- improveType <base_type> <rtti_type>
+-- The types can contain skolem type variables, which need to be treated as normal vars.
+-- In particular, we want them to unify with things.
+improveRTTIType :: HscEnv -> RttiType -> RttiType -> Maybe TvSubst
+improveRTTIType _ base_ty new_ty
+  = U.tcUnifyTys (const U.BindMe) [base_ty] [new_ty]
+
+getDataConArgTys :: DataCon -> Type -> TR [Type]
+-- Given the result type ty of a constructor application (D a b c :: ty) 
+-- return the types of the arguments.  This is RTTI-land, so 'ty' might
+-- not be fully known.  Moreover, the arg types might involve existentials;
+-- if so, make up fresh RTTI type variables for them
+getDataConArgTys dc con_app_ty
+  = do { (_, ex_tys, _) <- instTyVars ex_tvs
+       ; let rep_con_app_ty = repType con_app_ty
+       ; ty_args <- case tcSplitTyConApp_maybe rep_con_app_ty of
+                       Just (tc, ty_args) | dataConTyCon dc == tc
+                          -> ASSERT( univ_tvs `equalLength` ty_args) 
+                              return ty_args
+                      _   -> do { (_, ty_args, subst) <- instTyVars univ_tvs
+                                ; let res_ty = substTy subst (dataConOrigResTy dc)
+                                 ; addConstraint rep_con_app_ty res_ty
+                                 ; return ty_args }
+               -- It is necessary to check dataConTyCon dc == tc
+               -- because it may be the case that tc is a recursive
+               -- newtype and tcSplitTyConApp has not removed it. In
+               -- that case, we happily give up and don't match
+       ; let subst = zipTopTvSubst (univ_tvs ++ ex_tvs) (ty_args ++ ex_tys)
+       ; return (substTys subst (dataConRepArgTys dc)) }
+  where
+    univ_tvs = dataConUnivTyVars dc
+    ex_tvs   = dataConExTyVars dc
+
+isPtrType :: Type -> Bool
+isPtrType ty = case typePrimRep ty of
+                 PtrRep -> True
+                 _      -> False
+
+-- Soundness checks
+--------------------
 {-
-Example of Type Reconstruction
---------------------------------
-Suppose we have an existential type such as
-
-data Opaque = forall a. Opaque a
-
-And we have a term built as:
-
-t = Opaque (map Just [[1,1],[2,2]])
+This is not formalized anywhere, so hold to your seats!
+RTTI in the presence of newtypes can be a tricky and unsound business.
 
-The type of t as far as the typechecker goes is t :: Opaque
-If we seq the head of t, we obtain:
+Example:
+~~~~~~~~~
+Suppose we are doing RTTI for a partially evaluated
+closure t, the real type of which is t :: MkT Int, for
+
+   newtype MkT a = MkT [Maybe a]
+
+The table below shows the results of RTTI and the improvement
+calculated for different combinations of evaluatedness and :type t.
+Regard the two first columns as input and the next two as output.
+
+  # |     t     |  :type t  | rtti(t)  | improv.    | result
+    ------------------------------------------------------------
+  1 |     _     |    t b    |    a     | none       | OK
+  2 |     _     |   MkT b   |    a     | none       | OK
+  3 |     _     |   t Int   |    a     | none       | OK
+
+  If t is not evaluated at *all*, we are safe.
+
+  4 |  (_ : _)  |    t b    |   [a]    | t = []     | UNSOUND
+  5 |  (_ : _)  |   MkT b   |  MkT a   | none       | OK (compensating for the missing newtype)
+  6 |  (_ : _)  |   t Int   |  [Int]   | t = []     | UNSOUND
+
+  If a is a minimal whnf, we run into trouble. Note that
+  row 5 above does newtype enrichment on the ty_rtty parameter.
+
+  7 | (Just _:_)|    t b    |[Maybe a] | t = [],    | UNSOUND
+    |                       |          | b = Maybe a|
+
+  8 | (Just _:_)|   MkT b   |  MkT a   |  none      | OK
+  9 | (Just _:_)|   t Int   |   FAIL   |  none      | OK
+
+  And if t is any more evaluated than whnf, we are still in trouble.
+  Because constraints are solved in top-down order, when we reach the
+  Maybe subterm what we got is already unsound. This explains why the
+  row 9 fails to complete.
+
+  10 | (Just _:_)|  t Int  | [Maybe a]   |  FAIL    | OK
+  11 | (Just 1:_)|  t Int  | [Maybe Int] |  FAIL    | OK
+
+  We can undo the failure in row 9 by leaving out the constraint
+  coming from the type signature of t (i.e., the 2nd column).
+  Note that this type information is still used
+  to calculate the improvement. But we fail
+  when trying to calculate the improvement, as there is no unifier for
+  t Int = [Maybe a] or t Int = [Maybe Int].
+
+
+  Another set of examples with t :: [MkT (Maybe Int)]  \equiv  [[Maybe (Maybe Int)]]
+
+  # |     t     |    :type t    |  rtti(t)    | improvement | result
+    ---------------------------------------------------------------------
+  1 |(Just _:_) | [t (Maybe a)] | [[Maybe b]] | t = []      |
+    |           |               |             | b = Maybe a |
+
+The checks:
+~~~~~~~~~~~
+Consider a function obtainType that takes a value and a type and produces
+the Term representation and a substitution (the improvement).
+Assume an auxiliar rtti' function which does the actual job if recovering
+the type, but which may produce a false type.
+
+In pseudocode:
+
+  rtti' :: a -> IO Type  -- Does not use the static type information
+
+  obtainType :: a -> Type -> IO (Maybe (Term, Improvement))
+  obtainType v old_ty = do
+       rtti_ty <- rtti' v
+       if monomorphic rtti_ty || (check rtti_ty old_ty)
+        then ...
+         else return Nothing
+  where check rtti_ty old_ty = check1 rtti_ty &&
+                              check2 rtti_ty old_ty
+
+  check1 :: Type -> Bool
+  check2 :: Type -> Type -> Bool
+
+Now, if rtti' returns a monomorphic type, we are safe.
+If that is not the case, then we consider two conditions.
+
+
+1. To prevent the class of unsoundness displayed by
+   rows 4 and 7 in the example: no higher kind tyvars
+   accepted.
+
+  check1 (t a)   = NO
+  check1 (t Int) = NO
+  check1 ([] a)  = YES
+
+2. To prevent the class of unsoundness shown by row 6,
+   the rtti type should be structurally more
+   defined than the old type we are comparing it to.
+  check2 :: NewType -> OldType -> Bool
+  check2 a  _        = True
+  check2 [a] a       = True
+  check2 [a] (t Int) = False
+  check2 [a] (t a)   = False  -- By check1 we never reach this equation
+  check2 [Int] a     = True
+  check2 [Int] (t Int) = True
+  check2 [Maybe a]   (t Int) = False
+  check2 [Maybe Int] (t Int) = True
+  check2 (Maybe [a])   (m [Int]) = False
+  check2 (Maybe [Int]) (m [Int]) = True
 
-t - O (_1::a) 
-
-seq _1 ()
-
-t - O ( (_3::b) : (_4::[b]) ) 
-
-seq _3 ()
-
-t - O ( (Just (_5::c)) : (_4::[b]) ) 
-
-At this point, we know that b = (Maybe c)
-
-seq _5 ()
-
-t - O ( (Just ((_6::d) : (_7::[d]) )) : (_4::[b]) )
-
-At this point, we know that c = [d]
-
-seq _6 ()
-
-t - O ( (Just (1 : (_7::[d]) )) : (_4::[b]) )
-
-At this point, we know that d = Integer
-
-The fully reconstructed expressions, with propagation, would be:
+-}
 
-t - O ( (Just (_5::c)) : (_4::[Maybe c]) ) 
-t - O ( (Just ((_6::d) : (_7::[d]) )) : (_4::[Maybe [d]]) )
-t - O ( (Just (1 : (_7::[Integer]) )) : (_4::[Maybe [Integer]]) )
+check1 :: QuantifiedType -> Bool
+check1 (tvs, _) = not $ any isHigherKind (map tyVarKind tvs)
+ where
+   isHigherKind = not . null . fst . splitKindFunTys
+
+check2 :: QuantifiedType -> QuantifiedType -> Bool
+check2 (_, rtti_ty) (_, old_ty)
+  | Just (_, rttis) <- tcSplitTyConApp_maybe rtti_ty
+  = case () of
+      _ | Just (_,olds) <- tcSplitTyConApp_maybe old_ty
+        -> and$ zipWith check2 (map quantifyType rttis) (map quantifyType olds)
+      _ | Just _ <- splitAppTy_maybe old_ty
+        -> isMonomorphicOnNonPhantomArgs rtti_ty
+      _ -> True
+  | otherwise = True
+
+-- Dealing with newtypes
+--------------------------
+{-
+ congruenceNewtypes does a parallel fold over two Type values, 
+ compensating for missing newtypes on both sides. 
+ This is necessary because newtypes are not present 
+ in runtime, but sometimes there is evidence available.
+   Evidence can come from DataCon signatures or
+ from compile-time type inference.
+ What we are doing here is an approximation
+ of unification modulo a set of equations derived
+ from newtype definitions. These equations should be the
+ same as the equality coercions generated for newtypes
+ in System Fc. The idea is to perform a sort of rewriting,
+ taking those equations as rules, before launching unification.
+
+ The caller must ensure the following.
+ The 1st type (lhs) comes from the heap structure of ptrs,nptrs.
+ The 2nd type (rhs) comes from a DataCon type signature.
+ Rewriting (i.e. adding/removing a newtype wrapper) can happen
+ in both types, but in the rhs it is restricted to the result type.
 
+   Note that it is very tricky to make this 'rewriting'
+ work with the unification implemented by TcM, where
+ substitutions are operationally inlined. The order in which
+ constraints are unified is vital as we cannot modify
+ anything that has been touched by a previous unification step.
+Therefore, congruenceNewtypes is sound only if the types
+recovered by the RTTI mechanism are unified Top-Down.
+-}
+congruenceNewtypes ::  TcType -> TcType -> TR (TcType,TcType)
+congruenceNewtypes lhs rhs = go lhs rhs >>= \rhs' -> return (lhs,rhs')
+ where
+   go l r
+ -- TyVar lhs inductive case
+    | Just tv <- getTyVar_maybe l
+    , isTcTyVar tv
+    , isMetaTyVar tv
+    = recoverTR (return r) $ do
+         Indirect ty_v <- readMetaTyVar tv
+         traceTR $ fsep [text "(congruence) Following indirect tyvar:",
+                          ppr tv, equals, ppr ty_v]
+         go ty_v r
+-- FunTy inductive case
+    | Just (l1,l2) <- splitFunTy_maybe l
+    , Just (r1,r2) <- splitFunTy_maybe r
+    = do r2' <- go l2 r2
+         r1' <- go l1 r1
+         return (mkFunTy r1' r2')
+-- TyconApp Inductive case; this is the interesting bit.
+    | Just (tycon_l, _) <- tcSplitTyConApp_maybe lhs
+    , Just (tycon_r, _) <- tcSplitTyConApp_maybe rhs 
+    , tycon_l /= tycon_r 
+    = upgrade tycon_l r
+
+    | otherwise = return r
+
+    where upgrade :: TyCon -> Type -> TR Type
+          upgrade new_tycon ty
+            | not (isNewTyCon new_tycon) = do
+              traceTR (text "(Upgrade) Not matching newtype evidence: " <>
+                       ppr new_tycon <> text " for " <> ppr ty)
+              return ty 
+            | otherwise = do
+               traceTR (text "(Upgrade) upgraded " <> ppr ty <>
+                        text " in presence of newtype evidence " <> ppr new_tycon)
+               (_, vars, _) <- instTyVars (tyConTyVars new_tycon)
+               let ty' = mkTyConApp new_tycon vars
+               _ <- liftTcM (unifyType ty (repType ty'))
+        -- assumes that reptype doesn't ^^^^ touch tyconApp args 
+               return ty'
 
-For reference, the type of the thing inside the opaque is 
-map Just [[1,1],[2,2]] :: [Maybe [Integer]]
 
-NOTE: (Num t) contexts have been manually replaced by Integer for clarity
--}
+zonkTerm :: Term -> TcM Term
+zonkTerm = foldTermM (TermFoldM
+             { fTermM = \ty dc v tt -> zonkRttiType ty    >>= \ty' ->
+                                       return (Term ty' dc v tt)
+             , fSuspensionM  = \ct ty v b -> zonkRttiType ty >>= \ty ->
+                                             return (Suspension ct ty v b)
+             , fNewtypeWrapM = \ty dc t -> zonkRttiType ty >>= \ty' ->
+                                           return$ NewtypeWrap ty' dc t
+             , fRefWrapM     = \ty t -> return RefWrap  `ap` 
+                                        zonkRttiType ty `ap` return t
+             , fPrimM        = (return.) . Prim })
+
+zonkRttiType :: TcType -> TcM Type
+-- Zonk the type, replacing any unbound Meta tyvars
+-- by skolems, safely out of Meta-tyvar-land
+zonkRttiType = zonkType (mkZonkTcTyVar zonk_unbound_meta) 
+  where
+    zonk_unbound_meta tv 
+      = ASSERT( isTcTyVar tv )
+        do { tv' <- skolemiseUnboundMetaTyVar tv RuntimeUnk
+            -- This is where RuntimeUnks are born: 
+            -- otherwise-unconstrained unification variables are
+            -- turned into RuntimeUnks as they leave the
+            -- typechecker's monad
+           ; return (mkTyVarTy tv') }
+
+--------------------------------------------------------------------------------
+-- Restore Class predicates out of a representation type
+dictsView :: Type -> Type
+-- dictsView ty = ty
+dictsView (FunTy (TyConApp tc_dict args) ty)
+  | Just c <- tyConClass_maybe tc_dict
+  = FunTy (PredTy (ClassP c args)) (dictsView ty)
+dictsView ty
+  | Just (tc_fun, [TyConApp tc_dict args, ty2]) <- tcSplitTyConApp_maybe ty
+  , Just c <- tyConClass_maybe tc_dict
+  = mkTyConApp tc_fun [PredTy (ClassP c args), dictsView ty2]
+dictsView ty = ty
+
+
+-- Use only for RTTI types
+isMonomorphic :: RttiType -> Bool
+isMonomorphic ty = noExistentials && noUniversals
+ where (tvs, _, ty')  = tcSplitSigmaTy ty
+       noExistentials = isEmptyVarSet (tyVarsOfType ty')
+       noUniversals   = null tvs
+
+-- Use only for RTTI types
+isMonomorphicOnNonPhantomArgs :: RttiType -> Bool
+isMonomorphicOnNonPhantomArgs ty
+  | Just (tc, all_args) <- tcSplitTyConApp_maybe (repType ty)
+  , phantom_vars  <- tyConPhantomTyVars tc
+  , concrete_args <- [ arg | (tyv,arg) <- tyConTyVars tc `zip` all_args
+                           , tyv `notElem` phantom_vars]
+  = all isMonomorphicOnNonPhantomArgs concrete_args
+  | Just (ty1, ty2) <- splitFunTy_maybe ty
+  = all isMonomorphicOnNonPhantomArgs [ty1,ty2]
+  | otherwise = isMonomorphic ty
+
+tyConPhantomTyVars :: TyCon -> [TyVar]
+tyConPhantomTyVars tc
+  | isAlgTyCon tc
+  , Just dcs <- tyConDataCons_maybe tc
+  , dc_vars  <- concatMap dataConUnivTyVars dcs
+  = tyConTyVars tc \\ dc_vars
+tyConPhantomTyVars _ = []
+
+type QuantifiedType = ([TyVar], Type)   -- Make the free type variables explicit
+
+quantifyType :: Type -> QuantifiedType
+-- Generalize the type: find all free tyvars and wrap in the appropiate ForAll.
+quantifyType ty = (varSetElems (tyVarsOfType ty), ty)
+
+unlessM :: Monad m => m Bool -> m () -> m ()
+unlessM condM acc = condM >>= \c -> unless c acc
+
+
+-- Strict application of f at index i
+appArr :: Ix i => (e -> a) -> Array i e -> Int -> a
+appArr f a@(Array _ _ _ ptrs#) i@(I# i#)
+ = ASSERT2 (i < length(elems a), ppr(length$ elems a, i))
+   case indexArray# ptrs# i# of
+       (# e #) -> f e
+
+amap' :: (t -> b) -> Array Int t -> [b]
+amap' f (Array i0 i _ arr#) = map g [0 .. i - i0]
+    where g (I# i#) = case indexArray# arr# i# of
+                          (# e #) -> f e
+
+extractUnboxed  :: [Type] -> Closure -> [[Word]]
+extractUnboxed tt clos = go tt (nonPtrs clos)
+   where sizeofType t = primRepSizeW (typePrimRep t)
+         go [] _ = []
+         go (t:tt) xx 
+           | (x, rest) <- splitAt (sizeofType t) xx
+           = x : go tt rest