Treat isConstraintKind more consistently
[ghc.git] / compiler / types / Unify.hs
index 220865e..5248b72 100644 (file)
@@ -31,12 +31,12 @@ import GhcPrelude
 import Var
 import VarEnv
 import VarSet
-import Kind
 import Name( Name )
 import Type hiding ( getTvSubstEnv )
 import Coercion hiding ( getCvSubstEnv )
 import TyCon
 import TyCoRep hiding ( getTvSubstEnv, getCvSubstEnv )
+import FV( FV, fvVarSet, fvVarList )
 import Util
 import Pair
 import Outputable
@@ -84,7 +84,7 @@ How do you choose between them?
 1. If you know that the kinds of the two types are eqType, use
    the Ty variant. It is more efficient, as it does less work.
 
-2. If the kinds of variables in the  template type might mention type families,
+2. If the kinds of variables in the template type might mention type families,
    use the Ty variant (and do other work to make sure the kinds
    work out). These pure unification functions do a straightforward
    syntactic unification and do no complex reasoning about type
@@ -95,9 +95,9 @@ How do you choose between them?
    families in kinds in the TyKi variant. You just might get match
    failure even though a reducing a type family would lead to success.)
 
-3. Otherwise, if you're sure that the variable kinds to not mention
+3. Otherwise, if you're sure that the variable kinds do not mention
    type families and you're not already sure that the kind of the template
-   equals the kind of the target, then use the TyKi versio.n
+   equals the kind of the target, then use the TyKi version.
 -}
 
 -- | @tcMatchTy t1 t2@ produces a substitution (over fvs(t1))
@@ -501,7 +501,7 @@ tc_unify_tys :: (TyVar -> BindFlag)
 -- NB: It's tempting to ASSERT here that, if we're not matching kinds, then
 -- the kinds of the types should be the same. However, this doesn't work,
 -- as the types may be a dependent telescope, where later types have kinds
--- that mention variables occuring earlier in the list of types. Here's an
+-- that mention variables occurring earlier in the list of types. Here's an
 -- example (from typecheck/should_fail/T12709):
 --   template: [rep :: RuntimeRep,       a :: TYPE rep]
 --   target:   [LiftedRep :: RuntimeRep, Int :: TYPE LiftedRep]
@@ -546,7 +546,7 @@ During unification we use a TvSubstEnv/CvSubstEnv pair that is
 Note [Finding the substitution fixpoint]
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Finding the fixpoint of a non-idempotent substitution arising from a
-unification is harder than it looks, because of kinds.  Consider
+unification is much trickier than it looks, because of kinds.  Consider
    T k (H k (f:k)) ~ T * (g:*)
 If we unify, we get the substitution
    [ k -> *
@@ -561,41 +561,96 @@ If we don't do this, we may apply the substitution to something,
 and get an ill-formed type, i.e. one where typeKind will fail.
 This happened, for example, in Trac #9106.
 
-This is the reason for extending env with [f:k -> f:*], in the
-definition of env' in niFixTvSubst
+It gets worse.  In Trac #14164 we wanted to take the fixpoint of
+this substitution
+   [ xs_asV :-> F a_aY6 (z_aY7 :: a_aY6)
+                        (rest_aWF :: G a_aY6 (z_aY7 :: a_aY6))
+   , a_aY6  :-> a_aXQ ]
+
+We have to apply the substitution for a_aY6 two levels deep inside
+the invocation of F!  We don't have a function that recursively
+applies substitutions inside the kinds of variable occurrences (and
+probably rightly so).
+
+So, we work as follows:
+
+ 1. Start with the current substitution (which we are
+    trying to fixpoint
+       [ xs :-> F a (z :: a) (rest :: G a (z :: a))
+       , a  :-> b ]
+
+ 2. Take all the free vars of the range of the substitution:
+       {a, z, rest, b}
+    NB: the free variable finder closes over
+    the kinds of variable occurrences
+
+ 3. If none are in the domain of the substitution, stop.
+    We have found a fixpoint.
+
+ 4. Remove the variables that are bound by the substitution, leaving
+       {z, rest, b}
+
+ 5. Do a topo-sort to put them in dependency order:
+       [ b :: *, z :: a, rest :: G a z ]
+
+ 6. Apply the substitution left-to-right to the kinds of these
+    tyvars, extending it each time with a new binding, so we
+    finish up with
+       [ xs   :-> ..as before..
+       , a    :-> b
+       , b    :-> b    :: *
+       , z    :-> z    :: b
+       , rest :-> rest :: G b (z :: b) ]
+    Note that rest now has the right kind
+
+ 7. Apply this extended substitution (once) to the range of
+    the /original/ substitution.  (Note that we do the
+    extended substitution would go on forever if you tried
+    to find its fixpoint, because it maps z to z.)
+
+ 8. And go back to step 1
+
+In Step 6 we use the free vars from Step 2 as the initial
+in-scope set, because all of those variables appear in the
+range of the substitution, so they must all be in the in-scope
+set.  But NB that the type substitution engine does not look up
+variables in the in-scope set; it is used only to ensure no
+shadowing.
 -}
 
 niFixTCvSubst :: TvSubstEnv -> TCvSubst
 -- Find the idempotent fixed point of the non-idempotent substitution
--- See Note [Finding the substitution fixpoint]
+-- This is surprisingly tricky:
+--   see Note [Finding the substitution fixpoint]
 -- ToDo: use laziness instead of iteration?
-niFixTCvSubst tenv = f tenv
+niFixTCvSubst tenv
+  | not_fixpoint = niFixTCvSubst (mapVarEnv (substTy subst) tenv)
+  | otherwise    = subst
   where
-    f tenv
-        | not_fixpoint = f (mapVarEnv (substTy subst') tenv)
-        | otherwise    = subst
-        where
-          not_fixpoint  = anyVarSet in_domain range_tvs
-          in_domain tv  = tv `elemVarEnv` tenv
-
-          range_tvs     = nonDetFoldUFM (unionVarSet . tyCoVarsOfType) emptyVarSet tenv
-                          -- It's OK to use nonDetFoldUFM here because we
-                          -- forget the order immediately by creating a set
-          subst         = mkTvSubst (mkInScopeSet range_tvs) tenv
-
-             -- env' extends env by replacing any free type with
-             -- that same tyvar with a substituted kind
-             -- See note [Finding the substitution fixpoint]
-          tenv'  = extendVarEnvList tenv [ (rtv, mkTyVarTy $
-                                                 setTyVarKind rtv $
-                                                 substTy subst $
-                                                 tyVarKind rtv)
-                                         | rtv <- nonDetEltsUniqSet range_tvs
-                                         -- It's OK to use nonDetEltsUniqSet here
-                                         -- because we forget the order
-                                         -- immediatedly by putting it in VarEnv
-                                         , not (in_domain rtv) ]
-          subst' = mkTvSubst (mkInScopeSet range_tvs) tenv'
+    range_fvs :: FV
+    range_fvs = tyCoFVsOfTypes (nonDetEltsUFM tenv)
+          -- It's OK to use nonDetEltsUFM here because the
+          -- order of range_fvs, range_tvs is immaterial
+
+    range_tvs :: [TyVar]
+    range_tvs = fvVarList range_fvs
+
+    not_fixpoint  = any in_domain range_tvs
+    in_domain tv  = tv `elemVarEnv` tenv
+
+    free_tvs = toposortTyVars (filterOut in_domain range_tvs)
+
+    -- See Note [Finding the substitution fixpoint], Step 6
+    init_in_scope = mkInScopeSet (fvVarSet range_fvs)
+    subst = foldl add_free_tv
+                  (mkTvSubst init_in_scope tenv)
+                  free_tvs
+
+    add_free_tv :: TCvSubst -> TyVar -> TCvSubst
+    add_free_tv subst tv
+      = extendTvSubst subst tv (mkTyVarTy tv')
+     where
+        tv' = updateTyVarKind (substTy subst) tv
 
 niSubstTvSet :: TvSubstEnv -> TyCoVarSet -> TyCoVarSet
 -- Apply the non-idempotent substitution to a set of type variables,
@@ -889,7 +944,7 @@ unify_ty env ty1 (TyVarTy tv2) kco
 unify_ty env ty1 ty2 _kco
   | Just (tc1, tys1) <- mb_tc_app1
   , Just (tc2, tys2) <- mb_tc_app2
-  , tc1 == tc2 || (tcIsStarKind ty1 && tcIsStarKind ty2)
+  , tc1 == tc2 || (tcIsLiftedTypeKind ty1 && tcIsLiftedTypeKind ty2)
   = if isInjectiveTyCon tc1 Nominal
     then unify_tys env tys1 tys2
     else do { let inj | isTypeFamilyTyCon tc1
@@ -1263,7 +1318,7 @@ data MatchEnv = ME { me_tmpls :: TyVarSet
                    , me_env   :: RnEnv2 }
 
 -- | 'liftCoMatch' is sort of inverse to 'liftCoSubst'.  In particular, if
---   @liftCoMatch vars ty co == Just s@, then @listCoSubst s ty == co@,
+--   @liftCoMatch vars ty co == Just s@, then @liftCoSubst s ty == co@,
 --   where @==@ there means that the result of 'liftCoSubst' has the same
 --   type as the original co; but may be different under the hood.
 --   That is, it matches a type against a coercion of the same
@@ -1336,9 +1391,6 @@ ty_co_match menv subst ty co lkco rkco
     ty_co_match menv subst ty' co (substed_co_l `mkTransCo` lkco)
                                   (substed_co_r `mkTransCo` rkco)
 
-  | CoherenceCo co1 co2 <- co
-  = ty_co_match menv subst ty co1 (lkco `mkTransCo` mkSymCo co2) rkco
-
   | SymCo co' <- co
   = swapLiftCoEnv <$> ty_co_match menv (swapLiftCoEnv subst) ty co' rkco lkco
 
@@ -1353,7 +1405,7 @@ ty_co_match menv subst (TyVarTy tv1) co lkco rkco
   = if any (inRnEnvR rn_env) (tyCoVarsOfCoList co)
     then Nothing      -- occurs check failed
     else Just $ extendVarEnv subst tv1' $
-                castCoercionKind co (mkSymCo lkco) (mkSymCo rkco)
+                castCoercionKindI co (mkSymCo lkco) (mkSymCo rkco)
 
   | otherwise
   = Nothing
@@ -1401,6 +1453,21 @@ ty_co_match menv subst (ForAllTy (TvBndr tv1 _) ty1)
 ty_co_match _ subst (CoercionTy {}) _ _ _
   = Just subst -- don't inspect coercions
 
+ty_co_match menv subst ty (GRefl r t (MCo co)) lkco rkco
+  =  ty_co_match menv subst ty (GRefl r t MRefl) lkco (rkco `mkTransCo` mkSymCo co)
+
+ty_co_match menv subst ty co1 lkco rkco
+  | Just (CastTy t co, r) <- isReflCo_maybe co1
+  -- In @pushRefl@, pushing reflexive coercion inside CastTy will give us
+  -- t |> co ~ t ; <t> ; t ~ t |> co
+  -- But transitive coercions are not helpful. Therefore we deal
+  -- with it here: we do recursion on the smaller reflexive coercion,
+  -- while propagating the correct kind coercions.
+  = let kco' = mkSymCo co
+    in ty_co_match menv subst ty (mkReflCo r t) (lkco `mkTransCo` kco')
+                                                (rkco `mkTransCo` kco')
+
+
 ty_co_match menv subst ty co lkco rkco
   | Just co' <- pushRefl co = ty_co_match menv subst ty co' lkco rkco
   | otherwise               = Nothing
@@ -1445,17 +1512,18 @@ ty_co_match_args menv subst (ty:tys) (arg:args) (lkco:lkcos) (rkco:rkcos)
 ty_co_match_args _    _     _        _          _ _ = Nothing
 
 pushRefl :: Coercion -> Maybe Coercion
-pushRefl (Refl Nominal (AppTy ty1 ty2))
-  = Just (AppCo (Refl Nominal ty1) (mkNomReflCo ty2))
-pushRefl (Refl r (FunTy ty1 ty2))
-  | Just rep1 <- getRuntimeRep_maybe ty1
-  , Just rep2 <- getRuntimeRep_maybe ty2
-  = Just (TyConAppCo r funTyCon [ mkReflCo r rep1, mkReflCo r rep2
-                                , mkReflCo r ty1,  mkReflCo r ty2 ])
-pushRefl (Refl r (TyConApp tc tys))
-  = Just (TyConAppCo r tc (zipWith mkReflCo (tyConRolesX r tc) tys))
-pushRefl (Refl r (ForAllTy (TvBndr tv _) ty))
-  = Just (mkHomoForAllCos_NoRefl [tv] (Refl r ty))
+pushRefl co =
+  case (isReflCo_maybe co) of
+    Just (AppTy ty1 ty2, Nominal)
+      -> Just (AppCo (mkReflCo Nominal ty1) (mkNomReflCo ty2))
+    Just (FunTy ty1 ty2, r)
+      | Just rep1 <- getRuntimeRep_maybe ty1
+      , Just rep2 <- getRuntimeRep_maybe ty2
+      ->  Just (TyConAppCo r funTyCon [ mkReflCo r rep1, mkReflCo r rep2
+                                       , mkReflCo r ty1,  mkReflCo r ty2 ])
+    Just (TyConApp tc tys, r)
+      -> Just (TyConAppCo r tc (zipWith mkReflCo (tyConRolesX r tc) tys))
+    Just (ForAllTy (TvBndr tv _) ty, r)
+      -> Just (mkHomoForAllCos_NoRefl [tv] (mkReflCo r ty))
     -- NB: NoRefl variant. Otherwise, we get a loop!
-pushRefl (Refl r (CastTy ty co))  = Just (castCoercionKind (Refl r ty) co co)
-pushRefl _                        = Nothing
+    _ -> Nothing