Merge branch 'master' of http://darcs.haskell.org/ghc
[ghc.git] / includes / Cmm.h
1 /* -----------------------------------------------------------------------------
2 *
3 * (c) The University of Glasgow 2004-2012
4 *
5 * This file is included at the top of all .cmm source files (and
6 * *only* .cmm files). It defines a collection of useful macros for
7 * making .cmm code a bit less error-prone to write, and a bit easier
8 * on the eye for the reader.
9 *
10 * For the syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
11 *
12 * Accessing fields of structures defined in the RTS header files is
13 * done via automatically-generated macros in DerivedConstants.h. For
14 * example, where previously we used
15 *
16 * CurrentTSO->what_next = x
17 *
18 * in C-- we now use
19 *
20 * StgTSO_what_next(CurrentTSO) = x
21 *
22 * where the StgTSO_what_next() macro is automatically generated by
23 * mkDerivedConstants.c. If you need to access a field that doesn't
24 * already have a macro, edit that file (it's pretty self-explanatory).
25 *
26 * -------------------------------------------------------------------------- */
27
28 #ifndef CMM_H
29 #define CMM_H
30
31 /*
32 * In files that are included into both C and C-- (and perhaps
33 * Haskell) sources, we sometimes need to conditionally compile bits
34 * depending on the language. CMINUSMINUS==1 in .cmm sources:
35 */
36 #define CMINUSMINUS 1
37
38 #include "ghcconfig.h"
39
40 /* -----------------------------------------------------------------------------
41 Types
42
43 The following synonyms for C-- types are declared here:
44
45 I8, I16, I32, I64 MachRep-style names for convenience
46
47 W_ is shorthand for the word type (== StgWord)
48 F_ shorthand for float (F_ == StgFloat == C's float)
49 D_ shorthand for double (D_ == StgDouble == C's double)
50
51 CInt has the same size as an int in C on this platform
52 CLong has the same size as a long in C on this platform
53
54 --------------------------------------------------------------------------- */
55
56 #define I8 bits8
57 #define I16 bits16
58 #define I32 bits32
59 #define I64 bits64
60 #define P_ gcptr
61
62 #if SIZEOF_VOID_P == 4
63 #define W_ bits32
64 /* Maybe it's better to include MachDeps.h */
65 #define TAG_BITS 2
66 #elif SIZEOF_VOID_P == 8
67 #define W_ bits64
68 /* Maybe it's better to include MachDeps.h */
69 #define TAG_BITS 3
70 #else
71 #error Unknown word size
72 #endif
73
74 /*
75 * The RTS must sometimes UNTAG a pointer before dereferencing it.
76 * See the wiki page Commentary/Rts/HaskellExecution/PointerTagging
77 */
78 #define TAG_MASK ((1 << TAG_BITS) - 1)
79 #define UNTAG(p) (p & ~TAG_MASK)
80 #define GETTAG(p) (p & TAG_MASK)
81
82 #if SIZEOF_INT == 4
83 #define CInt bits32
84 #elif SIZEOF_INT == 8
85 #define CInt bits64
86 #else
87 #error Unknown int size
88 #endif
89
90 #if SIZEOF_LONG == 4
91 #define CLong bits32
92 #elif SIZEOF_LONG == 8
93 #define CLong bits64
94 #else
95 #error Unknown long size
96 #endif
97
98 #define F_ float32
99 #define D_ float64
100 #define L_ bits64
101 #define V16_ bits128
102
103 #define SIZEOF_StgDouble 8
104 #define SIZEOF_StgWord64 8
105
106 /* -----------------------------------------------------------------------------
107 Misc useful stuff
108 -------------------------------------------------------------------------- */
109
110 #define ccall foreign "C"
111
112 #define NULL (0::W_)
113
114 #define STRING(name,str) \
115 section "rodata" { \
116 name : bits8[] str; \
117 } \
118
119 #ifdef TABLES_NEXT_TO_CODE
120 #define RET_LBL(f) f##_info
121 #else
122 #define RET_LBL(f) f##_ret
123 #endif
124
125 #ifdef TABLES_NEXT_TO_CODE
126 #define ENTRY_LBL(f) f##_info
127 #else
128 #define ENTRY_LBL(f) f##_entry
129 #endif
130
131 /* -----------------------------------------------------------------------------
132 Byte/word macros
133
134 Everything in C-- is in byte offsets (well, most things). We use
135 some macros to allow us to express offsets in words and to try to
136 avoid byte/word confusion.
137 -------------------------------------------------------------------------- */
138
139 #define SIZEOF_W SIZEOF_VOID_P
140 #define W_MASK (SIZEOF_W-1)
141
142 #if SIZEOF_W == 4
143 #define W_SHIFT 2
144 #elif SIZEOF_W == 8
145 #define W_SHIFT 3
146 #endif
147
148 /* Converting quantities of words to bytes */
149 #define WDS(n) ((n)*SIZEOF_W)
150
151 /*
152 * Converting quantities of bytes to words
153 * NB. these work on *unsigned* values only
154 */
155 #define BYTES_TO_WDS(n) ((n) / SIZEOF_W)
156 #define ROUNDUP_BYTES_TO_WDS(n) (((n) + SIZEOF_W - 1) / SIZEOF_W)
157
158 /* TO_W_(n) converts n to W_ type from a smaller type */
159 #if SIZEOF_W == 4
160 #define TO_W_(x) %sx32(x)
161 #define HALF_W_(x) %lobits16(x)
162 #elif SIZEOF_W == 8
163 #define TO_W_(x) %sx64(x)
164 #define HALF_W_(x) %lobits32(x)
165 #endif
166
167 #if SIZEOF_INT == 4 && SIZEOF_W == 8
168 #define W_TO_INT(x) %lobits32(x)
169 #elif SIZEOF_INT == SIZEOF_W
170 #define W_TO_INT(x) (x)
171 #endif
172
173 #if SIZEOF_LONG == 4 && SIZEOF_W == 8
174 #define W_TO_LONG(x) %lobits32(x)
175 #elif SIZEOF_LONG == SIZEOF_W
176 #define W_TO_LONG(x) (x)
177 #endif
178
179 /* -----------------------------------------------------------------------------
180 Heap/stack access, and adjusting the heap/stack pointers.
181 -------------------------------------------------------------------------- */
182
183 #define Sp(n) W_[Sp + WDS(n)]
184 #define Hp(n) W_[Hp + WDS(n)]
185
186 #define Sp_adj(n) Sp = Sp + WDS(n) /* pronounced "spadge" */
187 #define Hp_adj(n) Hp = Hp + WDS(n)
188
189 /* -----------------------------------------------------------------------------
190 Assertions and Debuggery
191 -------------------------------------------------------------------------- */
192
193 #ifdef DEBUG
194 #define ASSERT(predicate) \
195 if (predicate) { \
196 /*null*/; \
197 } else { \
198 foreign "C" _assertFail(NULL, __LINE__) never returns; \
199 }
200 #else
201 #define ASSERT(p) /* nothing */
202 #endif
203
204 #ifdef DEBUG
205 #define DEBUG_ONLY(s) s
206 #else
207 #define DEBUG_ONLY(s) /* nothing */
208 #endif
209
210 /*
211 * The IF_DEBUG macro is useful for debug messages that depend on one
212 * of the RTS debug options. For example:
213 *
214 * IF_DEBUG(RtsFlags_DebugFlags_apply,
215 * foreign "C" fprintf(stderr, stg_ap_0_ret_str));
216 *
217 * Note the syntax is slightly different to the C version of this macro.
218 */
219 #ifdef DEBUG
220 #define IF_DEBUG(c,s) if (RtsFlags_DebugFlags_##c(RtsFlags) != 0::I32) { s; }
221 #else
222 #define IF_DEBUG(c,s) /* nothing */
223 #endif
224
225 /* -----------------------------------------------------------------------------
226 Entering
227
228 It isn't safe to "enter" every closure. Functions in particular
229 have no entry code as such; their entry point contains the code to
230 apply the function.
231
232 ToDo: range should end in N_CLOSURE_TYPES-1, not N_CLOSURE_TYPES,
233 but switch doesn't allow us to use exprs there yet.
234
235 If R1 points to a tagged object it points either to
236 * A constructor.
237 * A function with arity <= TAG_MASK.
238 In both cases the right thing to do is to return.
239 Note: it is rather lucky that we can use the tag bits to do this
240 for both objects. Maybe it points to a brittle design?
241
242 Indirections can contain tagged pointers, so their tag is checked.
243 -------------------------------------------------------------------------- */
244
245 #ifdef PROFILING
246
247 // When profiling, we cannot shortcut ENTER() by checking the tag,
248 // because LDV profiling relies on entering closures to mark them as
249 // "used".
250
251 #define LOAD_INFO(ret,x) \
252 info = %INFO_PTR(UNTAG(x));
253
254 #define UNTAG_IF_PROF(x) UNTAG(x)
255
256 #else
257
258 #define LOAD_INFO(ret,x) \
259 if (GETTAG(x) != 0) { \
260 ret(x); \
261 } \
262 info = %INFO_PTR(x);
263
264 #define UNTAG_IF_PROF(x) (x) /* already untagged */
265
266 #endif
267
268 // We need two versions of ENTER():
269 // - ENTER(x) takes the closure as an argument and uses return(),
270 // for use in civilized code where the stack is handled by GHC
271 //
272 // - ENTER_NOSTACK() where the closure is in R1, and returns are
273 // explicit jumps, for use when we are doing the stack management
274 // ourselves.
275
276 #define ENTER(x) ENTER_(return,x)
277 #define ENTER_R1() ENTER_(RET_R1,R1)
278
279 #define RET_R1(x) jump %ENTRY_CODE(Sp(0)) [R1]
280
281 #define ENTER_(ret,x) \
282 again: \
283 W_ info; \
284 LOAD_INFO(ret,x) \
285 switch [INVALID_OBJECT .. N_CLOSURE_TYPES] \
286 (TO_W_( %INFO_TYPE(%STD_INFO(info)) )) { \
287 case \
288 IND, \
289 IND_PERM, \
290 IND_STATIC: \
291 { \
292 x = StgInd_indirectee(x); \
293 goto again; \
294 } \
295 case \
296 FUN, \
297 FUN_1_0, \
298 FUN_0_1, \
299 FUN_2_0, \
300 FUN_1_1, \
301 FUN_0_2, \
302 FUN_STATIC, \
303 BCO, \
304 PAP: \
305 { \
306 ret(x); \
307 } \
308 default: \
309 { \
310 x = UNTAG_IF_PROF(x); \
311 jump %ENTRY_CODE(info) (x); \
312 } \
313 }
314
315 // The FUN cases almost never happen: a pointer to a non-static FUN
316 // should always be tagged. This unfortunately isn't true for the
317 // interpreter right now, which leaves untagged FUNs on the stack.
318
319 /* -----------------------------------------------------------------------------
320 Constants.
321 -------------------------------------------------------------------------- */
322
323 #include "rts/Constants.h"
324 #include "DerivedConstants.h"
325 #include "rts/storage/ClosureTypes.h"
326 #include "rts/storage/FunTypes.h"
327 #include "rts/storage/SMPClosureOps.h"
328 #include "rts/OSThreads.h"
329
330 /*
331 * Need MachRegs, because some of the RTS code is conditionally
332 * compiled based on REG_R1, REG_R2, etc.
333 */
334 #include "stg/RtsMachRegs.h"
335
336 #include "rts/prof/LDV.h"
337
338 #undef BLOCK_SIZE
339 #undef MBLOCK_SIZE
340 #include "rts/storage/Block.h" /* For Bdescr() */
341
342
343 #define MyCapability() (BaseReg - OFFSET_Capability_r)
344
345 /* -------------------------------------------------------------------------
346 Info tables
347 ------------------------------------------------------------------------- */
348
349 #if defined(PROFILING)
350 #define PROF_HDR_FIELDS(w_,hdr1,hdr2) \
351 w_ hdr1, \
352 w_ hdr2,
353 #else
354 #define PROF_HDR_FIELDS(w_,hdr1,hdr2) /* nothing */
355 #endif
356
357 /* -------------------------------------------------------------------------
358 Allocation and garbage collection
359 ------------------------------------------------------------------------- */
360
361 /*
362 * ALLOC_PRIM is for allocating memory on the heap for a primitive
363 * object. It is used all over PrimOps.cmm.
364 *
365 * We make the simplifying assumption that the "admin" part of a
366 * primitive closure is just the header when calculating sizes for
367 * ticky-ticky. It's not clear whether eg. the size field of an array
368 * should be counted as "admin", or the various fields of a BCO.
369 */
370 #define ALLOC_PRIM(bytes) \
371 HP_CHK_GEN_TICKY(bytes); \
372 TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
373 CCCS_ALLOC(bytes);
374
375 #define HEAP_CHECK(bytes,failure) \
376 Hp = Hp + (bytes); \
377 if (Hp > HpLim) { HpAlloc = (bytes); failure; } \
378 TICK_ALLOC_HEAP_NOCTR(bytes);
379
380 #define ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,failure) \
381 HEAP_CHECK(bytes,failure) \
382 TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
383 CCCS_ALLOC(bytes);
384
385 #define ALLOC_PRIM_(bytes,fun) \
386 ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM(fun));
387
388 #define ALLOC_PRIM_P(bytes,fun,arg) \
389 ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_P(fun,arg));
390
391 #define ALLOC_PRIM_N(bytes,fun,arg) \
392 ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_N(fun,arg));
393
394 /* CCS_ALLOC wants the size in words, because ccs->mem_alloc is in words */
395 #define CCCS_ALLOC(__alloc) CCS_ALLOC(BYTES_TO_WDS(__alloc), CCCS)
396
397 #define HP_CHK_GEN_TICKY(alloc) \
398 HP_CHK_GEN(alloc); \
399 TICK_ALLOC_HEAP_NOCTR(alloc);
400
401 #define HP_CHK_P(bytes, fun, arg) \
402 HEAP_CHECK(bytes, GC_PRIM_P(fun,arg))
403
404 #define ALLOC_P_TICKY(alloc, fun, arg) \
405 HP_CHK_P(alloc); \
406 TICK_ALLOC_HEAP_NOCTR(alloc);
407
408 #define CHECK_GC() \
409 (bdescr_link(CurrentNursery) == NULL || \
410 generation_n_new_large_words(W_[g0]) >= TO_W_(CLong[large_alloc_lim]))
411
412 // allocate() allocates from the nursery, so we check to see
413 // whether the nursery is nearly empty in any function that uses
414 // allocate() - this includes many of the primops.
415 //
416 // HACK alert: the __L__ stuff is here to coax the common-block
417 // eliminator into commoning up the call stg_gc_noregs() with the same
418 // code that gets generated by a STK_CHK_GEN() in the same proc. We
419 // also need an if (0) { goto __L__; } so that the __L__ label isn't
420 // optimised away by the control-flow optimiser prior to common-block
421 // elimination (it will be optimised away later).
422 //
423 // This saves some code in gmp-wrappers.cmm where we have lots of
424 // MAYBE_GC() in the same proc as STK_CHK_GEN().
425 //
426 #define MAYBE_GC(retry) \
427 if (CHECK_GC()) { \
428 HpAlloc = 0; \
429 goto __L__; \
430 __L__: \
431 call stg_gc_noregs(); \
432 goto retry; \
433 } \
434 if (0) { goto __L__; }
435
436 #define GC_PRIM(fun) \
437 R9 = fun; \
438 jump stg_gc_prim();
439
440 #define GC_PRIM_N(fun,arg) \
441 R9 = fun; \
442 jump stg_gc_prim_n(arg);
443
444 #define GC_PRIM_P(fun,arg) \
445 R9 = fun; \
446 jump stg_gc_prim_p(arg);
447
448 #define GC_PRIM_PP(fun,arg1,arg2) \
449 R9 = fun; \
450 jump stg_gc_prim_pp(arg1,arg2);
451
452 #define MAYBE_GC_(fun) \
453 if (CHECK_GC()) { \
454 HpAlloc = 0; \
455 GC_PRIM(fun) \
456 }
457
458 #define MAYBE_GC_N(fun,arg) \
459 if (CHECK_GC()) { \
460 HpAlloc = 0; \
461 GC_PRIM_N(fun,arg) \
462 }
463
464 #define MAYBE_GC_P(fun,arg) \
465 if (CHECK_GC()) { \
466 HpAlloc = 0; \
467 GC_PRIM_P(fun,arg) \
468 }
469
470 #define MAYBE_GC_PP(fun,arg1,arg2) \
471 if (CHECK_GC()) { \
472 HpAlloc = 0; \
473 GC_PRIM_PP(fun,arg1,arg2) \
474 }
475
476 #define STK_CHK(n, fun) \
477 if (Sp - (n) < SpLim) { \
478 GC_PRIM(fun) \
479 }
480
481 #define STK_CHK_P(n, fun, arg) \
482 if (Sp - (n) < SpLim) { \
483 GC_PRIM_P(fun,arg) \
484 }
485
486 #define STK_CHK_PP(n, fun, arg1, arg2) \
487 if (Sp - (n) < SpLim) { \
488 GC_PRIM_PP(fun,arg1,arg2) \
489 }
490
491 #define STK_CHK_ENTER(n, closure) \
492 if (Sp - (n) < SpLim) { \
493 jump __stg_gc_enter_1(closure); \
494 }
495
496 // A funky heap check used by AutoApply.cmm
497
498 #define HP_CHK_NP_ASSIGN_SP0(size,f) \
499 HEAP_CHECK(size, Sp(0) = f; jump __stg_gc_enter_1 [R1];)
500
501 /* -----------------------------------------------------------------------------
502 Closure headers
503 -------------------------------------------------------------------------- */
504
505 /*
506 * This is really ugly, since we don't do the rest of StgHeader this
507 * way. The problem is that values from DerivedConstants.h cannot be
508 * dependent on the way (SMP, PROF etc.). For SIZEOF_StgHeader we get
509 * the value from GHC, but it seems like too much trouble to do that
510 * for StgThunkHeader.
511 */
512 #define SIZEOF_StgThunkHeader SIZEOF_StgHeader+SIZEOF_StgSMPThunkHeader
513
514 #define StgThunk_payload(__ptr__,__ix__) \
515 W_[__ptr__+SIZEOF_StgThunkHeader+ WDS(__ix__)]
516
517 /* -----------------------------------------------------------------------------
518 Closures
519 -------------------------------------------------------------------------- */
520
521 /* The offset of the payload of an array */
522 #define BYTE_ARR_CTS(arr) ((arr) + SIZEOF_StgArrWords)
523
524 /* The number of words allocated in an array payload */
525 #define BYTE_ARR_WDS(arr) ROUNDUP_BYTES_TO_WDS(StgArrWords_bytes(arr))
526
527 /* Getting/setting the info pointer of a closure */
528 #define SET_INFO(p,info) StgHeader_info(p) = info
529 #define GET_INFO(p) StgHeader_info(p)
530
531 /* Determine the size of an ordinary closure from its info table */
532 #define sizeW_fromITBL(itbl) \
533 SIZEOF_StgHeader + WDS(%INFO_PTRS(itbl)) + WDS(%INFO_NPTRS(itbl))
534
535 /* NB. duplicated from InfoTables.h! */
536 #define BITMAP_SIZE(bitmap) ((bitmap) & BITMAP_SIZE_MASK)
537 #define BITMAP_BITS(bitmap) ((bitmap) >> BITMAP_BITS_SHIFT)
538
539 /* Debugging macros */
540 #define LOOKS_LIKE_INFO_PTR(p) \
541 ((p) != NULL && \
542 LOOKS_LIKE_INFO_PTR_NOT_NULL(p))
543
544 #define LOOKS_LIKE_INFO_PTR_NOT_NULL(p) \
545 ( (TO_W_(%INFO_TYPE(%STD_INFO(p))) != INVALID_OBJECT) && \
546 (TO_W_(%INFO_TYPE(%STD_INFO(p))) < N_CLOSURE_TYPES))
547
548 #define LOOKS_LIKE_CLOSURE_PTR(p) (LOOKS_LIKE_INFO_PTR(GET_INFO(UNTAG(p))))
549
550 /*
551 * The layout of the StgFunInfoExtra part of an info table changes
552 * depending on TABLES_NEXT_TO_CODE. So we define field access
553 * macros which use the appropriate version here:
554 */
555 #ifdef TABLES_NEXT_TO_CODE
556 /*
557 * when TABLES_NEXT_TO_CODE, slow_apply is stored as an offset
558 * instead of the normal pointer.
559 */
560
561 #define StgFunInfoExtra_slow_apply(fun_info) \
562 (TO_W_(StgFunInfoExtraRev_slow_apply_offset(fun_info)) \
563 + (fun_info) + SIZEOF_StgFunInfoExtraRev + SIZEOF_StgInfoTable)
564
565 #define StgFunInfoExtra_fun_type(i) StgFunInfoExtraRev_fun_type(i)
566 #define StgFunInfoExtra_arity(i) StgFunInfoExtraRev_arity(i)
567 #define StgFunInfoExtra_bitmap(i) StgFunInfoExtraRev_bitmap(i)
568 #else
569 #define StgFunInfoExtra_slow_apply(i) StgFunInfoExtraFwd_slow_apply(i)
570 #define StgFunInfoExtra_fun_type(i) StgFunInfoExtraFwd_fun_type(i)
571 #define StgFunInfoExtra_arity(i) StgFunInfoExtraFwd_arity(i)
572 #define StgFunInfoExtra_bitmap(i) StgFunInfoExtraFwd_bitmap(i)
573 #endif
574
575 #define mutArrCardMask ((1 << MUT_ARR_PTRS_CARD_BITS) - 1)
576 #define mutArrPtrCardDown(i) ((i) >> MUT_ARR_PTRS_CARD_BITS)
577 #define mutArrPtrCardUp(i) (((i) + mutArrCardMask) >> MUT_ARR_PTRS_CARD_BITS)
578 #define mutArrPtrsCardWords(n) ROUNDUP_BYTES_TO_WDS(mutArrPtrCardUp(n))
579
580 #if defined(PROFILING) || (!defined(THREADED_RTS) && defined(DEBUG))
581 #define OVERWRITING_CLOSURE(c) foreign "C" overwritingClosure(c "ptr")
582 #else
583 #define OVERWRITING_CLOSURE(c) /* nothing */
584 #endif
585
586 /* -----------------------------------------------------------------------------
587 Ticky macros
588 -------------------------------------------------------------------------- */
589
590 #ifdef TICKY_TICKY
591 #define TICK_BUMP_BY(ctr,n) CLong[ctr] = CLong[ctr] + n
592 #else
593 #define TICK_BUMP_BY(ctr,n) /* nothing */
594 #endif
595
596 #define TICK_BUMP(ctr) TICK_BUMP_BY(ctr,1)
597
598 #define TICK_ENT_DYN_IND() TICK_BUMP(ENT_DYN_IND_ctr)
599 #define TICK_ENT_DYN_THK() TICK_BUMP(ENT_DYN_THK_ctr)
600 #define TICK_ENT_VIA_NODE() TICK_BUMP(ENT_VIA_NODE_ctr)
601 #define TICK_ENT_STATIC_IND() TICK_BUMP(ENT_STATIC_IND_ctr)
602 #define TICK_ENT_PERM_IND() TICK_BUMP(ENT_PERM_IND_ctr)
603 #define TICK_ENT_PAP() TICK_BUMP(ENT_PAP_ctr)
604 #define TICK_ENT_AP() TICK_BUMP(ENT_AP_ctr)
605 #define TICK_ENT_AP_STACK() TICK_BUMP(ENT_AP_STACK_ctr)
606 #define TICK_ENT_BH() TICK_BUMP(ENT_BH_ctr)
607 #define TICK_UNKNOWN_CALL() TICK_BUMP(UNKNOWN_CALL_ctr)
608 #define TICK_UPDF_PUSHED() TICK_BUMP(UPDF_PUSHED_ctr)
609 #define TICK_CATCHF_PUSHED() TICK_BUMP(CATCHF_PUSHED_ctr)
610 #define TICK_UPDF_OMITTED() TICK_BUMP(UPDF_OMITTED_ctr)
611 #define TICK_UPD_NEW_IND() TICK_BUMP(UPD_NEW_IND_ctr)
612 #define TICK_UPD_NEW_PERM_IND() TICK_BUMP(UPD_NEW_PERM_IND_ctr)
613 #define TICK_UPD_OLD_IND() TICK_BUMP(UPD_OLD_IND_ctr)
614 #define TICK_UPD_OLD_PERM_IND() TICK_BUMP(UPD_OLD_PERM_IND_ctr)
615
616 #define TICK_SLOW_CALL_FUN_TOO_FEW() TICK_BUMP(SLOW_CALL_FUN_TOO_FEW_ctr)
617 #define TICK_SLOW_CALL_FUN_CORRECT() TICK_BUMP(SLOW_CALL_FUN_CORRECT_ctr)
618 #define TICK_SLOW_CALL_FUN_TOO_MANY() TICK_BUMP(SLOW_CALL_FUN_TOO_MANY_ctr)
619 #define TICK_SLOW_CALL_PAP_TOO_FEW() TICK_BUMP(SLOW_CALL_PAP_TOO_FEW_ctr)
620 #define TICK_SLOW_CALL_PAP_CORRECT() TICK_BUMP(SLOW_CALL_PAP_CORRECT_ctr)
621 #define TICK_SLOW_CALL_PAP_TOO_MANY() TICK_BUMP(SLOW_CALL_PAP_TOO_MANY_ctr)
622
623 #define TICK_SLOW_CALL_v() TICK_BUMP(SLOW_CALL_v_ctr)
624 #define TICK_SLOW_CALL_p() TICK_BUMP(SLOW_CALL_p_ctr)
625 #define TICK_SLOW_CALL_pv() TICK_BUMP(SLOW_CALL_pv_ctr)
626 #define TICK_SLOW_CALL_pp() TICK_BUMP(SLOW_CALL_pp_ctr)
627 #define TICK_SLOW_CALL_ppp() TICK_BUMP(SLOW_CALL_ppp_ctr)
628 #define TICK_SLOW_CALL_pppp() TICK_BUMP(SLOW_CALL_pppp_ctr)
629 #define TICK_SLOW_CALL_ppppp() TICK_BUMP(SLOW_CALL_ppppp_ctr)
630 #define TICK_SLOW_CALL_pppppp() TICK_BUMP(SLOW_CALL_pppppp_ctr)
631
632 /* NOTE: TICK_HISTO_BY and TICK_HISTO
633 currently have no effect.
634 The old code for it didn't typecheck and I
635 just commented it out to get ticky to work.
636 - krc 1/2007 */
637
638 #define TICK_HISTO_BY(histo,n,i) /* nothing */
639
640 #define TICK_HISTO(histo,n) TICK_HISTO_BY(histo,n,1)
641
642 /* An unboxed tuple with n components. */
643 #define TICK_RET_UNBOXED_TUP(n) \
644 TICK_BUMP(RET_UNBOXED_TUP_ctr++); \
645 TICK_HISTO(RET_UNBOXED_TUP,n)
646
647 /*
648 * A slow call with n arguments. In the unevald case, this call has
649 * already been counted once, so don't count it again.
650 */
651 #define TICK_SLOW_CALL(n) \
652 TICK_BUMP(SLOW_CALL_ctr); \
653 TICK_HISTO(SLOW_CALL,n)
654
655 /*
656 * This slow call was found to be to an unevaluated function; undo the
657 * ticks we did in TICK_SLOW_CALL.
658 */
659 #define TICK_SLOW_CALL_UNEVALD(n) \
660 TICK_BUMP(SLOW_CALL_UNEVALD_ctr); \
661 TICK_BUMP_BY(SLOW_CALL_ctr,-1); \
662 TICK_HISTO_BY(SLOW_CALL,n,-1);
663
664 /* Updating a closure with a new CON */
665 #define TICK_UPD_CON_IN_NEW(n) \
666 TICK_BUMP(UPD_CON_IN_NEW_ctr); \
667 TICK_HISTO(UPD_CON_IN_NEW,n)
668
669 #define TICK_ALLOC_HEAP_NOCTR(n) \
670 TICK_BUMP(ALLOC_HEAP_ctr); \
671 TICK_BUMP_BY(ALLOC_HEAP_tot,n)
672
673 /* -----------------------------------------------------------------------------
674 Saving and restoring STG registers
675
676 STG registers must be saved around a C call, just in case the STG
677 register is mapped to a caller-saves machine register. Normally we
678 don't need to worry about this the code generator has already
679 loaded any live STG registers into variables for us, but in
680 hand-written low-level Cmm code where we don't know which registers
681 are live, we might have to save them all.
682 -------------------------------------------------------------------------- */
683
684 #define SAVE_STGREGS \
685 W_ r1, r2, r3, r4, r5, r6, r7, r8; \
686 F_ f1, f2, f3, f4, f5, f6; \
687 D_ d1, d2, d3, d4, d5, d6; \
688 L_ l1; \
689 \
690 r1 = R1; \
691 r2 = R2; \
692 r3 = R3; \
693 r4 = R4; \
694 r5 = R5; \
695 r6 = R6; \
696 r7 = R7; \
697 r8 = R8; \
698 \
699 f1 = F1; \
700 f2 = F2; \
701 f3 = F3; \
702 f4 = F4; \
703 f5 = F5; \
704 f6 = F6; \
705 \
706 d1 = D1; \
707 d2 = D2; \
708 d3 = D3; \
709 d4 = D4; \
710 d5 = D5; \
711 d6 = D6; \
712 \
713 l1 = L1;
714
715
716 #define RESTORE_STGREGS \
717 R1 = r1; \
718 R2 = r2; \
719 R3 = r3; \
720 R4 = r4; \
721 R5 = r5; \
722 R6 = r6; \
723 R7 = r7; \
724 R8 = r8; \
725 \
726 F1 = f1; \
727 F2 = f2; \
728 F3 = f3; \
729 F4 = f4; \
730 F5 = f5; \
731 F6 = f6; \
732 \
733 D1 = d1; \
734 D2 = d2; \
735 D3 = d3; \
736 D4 = d4; \
737 D5 = d5; \
738 D6 = d6; \
739 \
740 L1 = l1;
741
742 /* -----------------------------------------------------------------------------
743 Misc junk
744 -------------------------------------------------------------------------- */
745
746 #define NO_TREC stg_NO_TREC_closure
747 #define END_TSO_QUEUE stg_END_TSO_QUEUE_closure
748 #define STM_AWOKEN stg_STM_AWOKEN_closure
749 #define END_INVARIANT_CHECK_QUEUE stg_END_INVARIANT_CHECK_QUEUE_closure
750
751 #define recordMutableCap(p, gen) \
752 W_ __bd; \
753 W_ mut_list; \
754 mut_list = Capability_mut_lists(MyCapability()) + WDS(gen); \
755 __bd = W_[mut_list]; \
756 if (bdescr_free(__bd) >= bdescr_start(__bd) + BLOCK_SIZE) { \
757 W_ __new_bd; \
758 ("ptr" __new_bd) = foreign "C" allocBlock_lock(); \
759 bdescr_link(__new_bd) = __bd; \
760 __bd = __new_bd; \
761 W_[mut_list] = __bd; \
762 } \
763 W_ free; \
764 free = bdescr_free(__bd); \
765 W_[free] = p; \
766 bdescr_free(__bd) = free + WDS(1);
767
768 #define recordMutable(p) \
769 P_ __p; \
770 W_ __bd; \
771 W_ __gen; \
772 __p = p; \
773 __bd = Bdescr(__p); \
774 __gen = TO_W_(bdescr_gen_no(__bd)); \
775 if (__gen > 0) { recordMutableCap(__p, __gen); }
776
777 #endif /* CMM_H */