Store a SrcSpan instead of a SrcLoc inside a Name
[ghc.git] / compiler / typecheck / TcMType.lhs
1 %
2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 %
5
6 Monadic type operations
7
8 This module contains monadic operations over types that contain
9 mutable type variables
10
11 \begin{code}
12 module TcMType (
13   TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,
14
15   --------------------------------
16   -- Creating new mutable type variables
17   newFlexiTyVar,
18   newFlexiTyVarTy,              -- Kind -> TcM TcType
19   newFlexiTyVarTys,             -- Int -> Kind -> TcM [TcType]
20   newKindVar, newKindVars, 
21   lookupTcTyVar, LookupTyVarResult(..),
22   newMetaTyVar, readMetaTyVar, writeMetaTyVar, 
23
24   --------------------------------
25   -- Boxy type variables
26   newBoxyTyVar, newBoxyTyVars, newBoxyTyVarTys, readFilledBox, 
27
28   --------------------------------
29   -- Creating new coercion variables
30   newCoVars,
31
32   --------------------------------
33   -- Instantiation
34   tcInstTyVar, tcInstType, tcInstTyVars, tcInstBoxyTyVar,
35   tcInstSigTyVars, zonkSigTyVar,
36   tcInstSkolTyVar, tcInstSkolTyVars, tcInstSkolType, 
37   tcSkolSigType, tcSkolSigTyVars,
38
39   --------------------------------
40   -- Checking type validity
41   Rank, UserTypeCtxt(..), checkValidType, 
42   SourceTyCtxt(..), checkValidTheta, checkFreeness,
43   checkValidInstHead, checkValidInstance, checkAmbiguity,
44   checkInstTermination,
45   arityErr, 
46
47   --------------------------------
48   -- Zonking
49   zonkType, zonkTcPredType, 
50   zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, 
51   zonkQuantifiedTyVar, zonkQuantifiedTyVars,
52   zonkTcType, zonkTcTypes, zonkTcClassConstraints, zonkTcThetaType,
53   zonkTcKindToKind, zonkTcKind, zonkTopTyVar,
54
55   readKindVar, writeKindVar
56
57   ) where
58
59 #include "HsVersions.h"
60
61 -- friends:
62 import TypeRep
63 import TcType
64 import Type
65 import Coercion
66 import Class
67 import TyCon
68 import Var
69
70 -- others:
71 import TcRnMonad          -- TcType, amongst others
72 import FunDeps
73 import Name
74 import VarSet
75 import ErrUtils
76 import DynFlags
77 import Util
78 import Maybes
79 import ListSetOps
80 import UniqSupply
81 import SrcLoc
82 import Outputable
83
84 import Control.Monad    ( when, unless )
85 import Data.List        ( (\\) )
86 \end{code}
87
88
89 %************************************************************************
90 %*                                                                      *
91         Instantiation in general
92 %*                                                                      *
93 %************************************************************************
94
95 \begin{code}
96 tcInstType :: ([TyVar] -> TcM [TcTyVar])                -- How to instantiate the type variables
97            -> TcType                                    -- Type to instantiate
98            -> TcM ([TcTyVar], TcThetaType, TcType)      -- Result
99 tcInstType inst_tyvars ty
100   = case tcSplitForAllTys ty of
101         ([],     rho) -> let    -- There may be overloading despite no type variables;
102                                 --      (?x :: Int) => Int -> Int
103                            (theta, tau) = tcSplitPhiTy rho
104                          in
105                          return ([], theta, tau)
106
107         (tyvars, rho) -> do { tyvars' <- inst_tyvars tyvars
108
109                             ; let  tenv = zipTopTvSubst tyvars (mkTyVarTys tyvars')
110                                 -- Either the tyvars are freshly made, by inst_tyvars,
111                                 -- or (in the call from tcSkolSigType) any nested foralls
112                                 -- have different binders.  Either way, zipTopTvSubst is ok
113
114                             ; let  (theta, tau) = tcSplitPhiTy (substTy tenv rho)
115                             ; return (tyvars', theta, tau) }
116 \end{code}
117
118
119 %************************************************************************
120 %*                                                                      *
121         Kind variables
122 %*                                                                      *
123 %************************************************************************
124
125 \begin{code}
126 newCoVars :: [(TcType,TcType)] -> TcM [CoVar]
127 newCoVars spec
128   = do  { us <- newUniqueSupply 
129         ; return [ mkCoVar (mkSysTvName uniq FSLIT("co"))
130                            (mkCoKind ty1 ty2)
131                  | ((ty1,ty2), uniq) <- spec `zip` uniqsFromSupply us] }
132
133 newKindVar :: TcM TcKind
134 newKindVar = do { uniq <- newUnique
135                 ; ref <- newMutVar Flexi
136                 ; return (mkTyVarTy (mkKindVar uniq ref)) }
137
138 newKindVars :: Int -> TcM [TcKind]
139 newKindVars n = mappM (\ _ -> newKindVar) (nOfThem n ())
140 \end{code}
141
142
143 %************************************************************************
144 %*                                                                      *
145         SkolemTvs (immutable)
146 %*                                                                      *
147 %************************************************************************
148
149 \begin{code}
150 mkSkolTyVar :: Name -> Kind -> SkolemInfo -> TcTyVar
151 mkSkolTyVar name kind info = mkTcTyVar name kind (SkolemTv info)
152
153 tcSkolSigType :: SkolemInfo -> Type -> TcM ([TcTyVar], TcThetaType, TcType)
154 -- Instantiate a type signature with skolem constants, but 
155 -- do *not* give them fresh names, because we want the name to
156 -- be in the type environment -- it is lexically scoped.
157 tcSkolSigType info ty = tcInstType (\tvs -> return (tcSkolSigTyVars info tvs)) ty
158
159 tcSkolSigTyVars :: SkolemInfo -> [TyVar] -> [TcTyVar]
160 -- Make skolem constants, but do *not* give them new names, as above
161 tcSkolSigTyVars info tyvars = [ mkSkolTyVar (tyVarName tv) (tyVarKind tv) info
162                               | tv <- tyvars ]
163
164 tcInstSkolTyVar :: SkolemInfo -> Maybe SrcSpan -> TyVar -> TcM TcTyVar
165 -- Instantiate the tyvar, using 
166 --      * the occ-name and kind of the supplied tyvar, 
167 --      * the unique from the monad,
168 --      * the location either from the tyvar (mb_loc = Nothing)
169 --        or from mb_loc (Just loc)
170 tcInstSkolTyVar info mb_loc tyvar
171   = do  { uniq <- newUnique
172         ; let old_name = tyVarName tyvar
173               kind     = tyVarKind tyvar
174               loc      = mb_loc `orElse` getSrcSpan old_name
175               new_name = mkInternalName uniq (nameOccName old_name) loc
176         ; return (mkSkolTyVar new_name kind info) }
177
178 tcInstSkolTyVars :: SkolemInfo -> [TyVar] -> TcM [TcTyVar]
179 -- Get the location from the monad
180 tcInstSkolTyVars info tyvars 
181   = do  { span <- getSrcSpanM
182         ; mapM (tcInstSkolTyVar info (Just span)) tyvars }
183
184 tcInstSkolType :: SkolemInfo -> TcType -> TcM ([TcTyVar], TcThetaType, TcType)
185 -- Instantiate a type with fresh skolem constants
186 -- Binding location comes from the monad
187 tcInstSkolType info ty = tcInstType (tcInstSkolTyVars info) ty
188 \end{code}
189
190
191 %************************************************************************
192 %*                                                                      *
193         MetaTvs (meta type variables; mutable)
194 %*                                                                      *
195 %************************************************************************
196
197 \begin{code}
198 newMetaTyVar :: BoxInfo -> Kind -> TcM TcTyVar
199 -- Make a new meta tyvar out of thin air
200 newMetaTyVar box_info kind
201   = do  { uniq <- newUnique
202         ; ref <- newMutVar Flexi ;
203         ; let name = mkSysTvName uniq fs 
204               fs = case box_info of
205                         BoxTv   -> FSLIT("t")
206                         TauTv   -> FSLIT("t")
207                         SigTv _ -> FSLIT("a")
208                 -- We give BoxTv and TauTv the same string, because
209                 -- otherwise we get user-visible differences in error
210                 -- messages, which are confusing.  If you want to see
211                 -- the box_info of each tyvar, use -dppr-debug
212         ; return (mkTcTyVar name kind (MetaTv box_info ref)) }
213
214 instMetaTyVar :: BoxInfo -> TyVar -> TcM TcTyVar
215 -- Make a new meta tyvar whose Name and Kind 
216 -- come from an existing TyVar
217 instMetaTyVar box_info tyvar
218   = do  { uniq <- newUnique
219         ; ref <- newMutVar Flexi ;
220         ; let name = setNameUnique (tyVarName tyvar) uniq
221               kind = tyVarKind tyvar
222         ; return (mkTcTyVar name kind (MetaTv box_info ref)) }
223
224 readMetaTyVar :: TyVar -> TcM MetaDetails
225 readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
226                       readMutVar (metaTvRef tyvar)
227
228 writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
229 #ifndef DEBUG
230 writeMetaTyVar tyvar ty = writeMutVar (metaTvRef tyvar) (Indirect ty)
231 #else
232 writeMetaTyVar tyvar ty
233   | not (isMetaTyVar tyvar)
234   = pprTrace "writeMetaTyVar" (ppr tyvar) $
235     returnM ()
236
237   | otherwise
238   = ASSERT( isMetaTyVar tyvar )
239     ASSERT2( k2 `isSubKind` k1, (ppr tyvar <+> ppr k1) $$ (ppr ty <+> ppr k2) )
240     do  { ASSERTM2( do { details <- readMetaTyVar tyvar; return (isFlexi details) }, ppr tyvar )
241         ; writeMutVar (metaTvRef tyvar) (Indirect ty) }
242   where
243     k1 = tyVarKind tyvar
244     k2 = typeKind ty
245 #endif
246 \end{code}
247
248
249 %************************************************************************
250 %*                                                                      *
251         MetaTvs: TauTvs
252 %*                                                                      *
253 %************************************************************************
254
255 \begin{code}
256 newFlexiTyVar :: Kind -> TcM TcTyVar
257 newFlexiTyVar kind = newMetaTyVar TauTv kind
258
259 newFlexiTyVarTy  :: Kind -> TcM TcType
260 newFlexiTyVarTy kind
261   = newFlexiTyVar kind  `thenM` \ tc_tyvar ->
262     returnM (TyVarTy tc_tyvar)
263
264 newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
265 newFlexiTyVarTys n kind = mappM newFlexiTyVarTy (nOfThem n kind)
266
267 tcInstTyVar :: TyVar -> TcM TcTyVar
268 -- Instantiate with a META type variable
269 tcInstTyVar tyvar = instMetaTyVar TauTv tyvar
270
271 tcInstTyVars :: [TyVar] -> TcM ([TcTyVar], [TcType], TvSubst)
272 -- Instantiate with META type variables
273 tcInstTyVars tyvars
274   = do  { tc_tvs <- mapM tcInstTyVar tyvars
275         ; let tys = mkTyVarTys tc_tvs
276         ; returnM (tc_tvs, tys, zipTopTvSubst tyvars tys) }
277                 -- Since the tyvars are freshly made,
278                 -- they cannot possibly be captured by
279                 -- any existing for-alls.  Hence zipTopTvSubst
280 \end{code}
281
282
283 %************************************************************************
284 %*                                                                      *
285         MetaTvs: SigTvs
286 %*                                                                      *
287 %************************************************************************
288
289 \begin{code}
290 tcInstSigTyVars :: Bool -> SkolemInfo -> [TyVar] -> TcM [TcTyVar]
291 -- Instantiate with skolems or meta SigTvs; depending on use_skols
292 -- Always take location info from the supplied tyvars
293 tcInstSigTyVars use_skols skol_info tyvars 
294   | use_skols
295   = mapM (tcInstSkolTyVar skol_info Nothing) tyvars
296
297   | otherwise
298   = mapM (instMetaTyVar (SigTv skol_info)) tyvars
299
300 zonkSigTyVar :: TcTyVar -> TcM TcTyVar
301 zonkSigTyVar sig_tv 
302   | isSkolemTyVar sig_tv 
303   = return sig_tv       -- Happens in the call in TcBinds.checkDistinctTyVars
304   | otherwise
305   = ASSERT( isSigTyVar sig_tv )
306     do { ty <- zonkTcTyVar sig_tv
307        ; return (tcGetTyVar "zonkSigTyVar" ty) }
308         -- 'ty' is bound to be a type variable, because SigTvs
309         -- can only be unified with type variables
310 \end{code}
311
312
313 %************************************************************************
314 %*                                                                      *
315         MetaTvs: BoxTvs
316 %*                                                                      *
317 %************************************************************************
318
319 \begin{code}
320 newBoxyTyVar :: Kind -> TcM BoxyTyVar
321 newBoxyTyVar kind = newMetaTyVar BoxTv kind
322
323 newBoxyTyVars :: [Kind] -> TcM [BoxyTyVar]
324 newBoxyTyVars kinds = mapM newBoxyTyVar kinds
325
326 newBoxyTyVarTys :: [Kind] -> TcM [BoxyType]
327 newBoxyTyVarTys kinds = do { tvs <- mapM newBoxyTyVar kinds; return (mkTyVarTys tvs) }
328
329 readFilledBox :: BoxyTyVar -> TcM TcType
330 -- Read the contents of the box, which should be filled in by now
331 readFilledBox box_tv = ASSERT( isBoxyTyVar box_tv )
332                        do { cts <- readMetaTyVar box_tv
333                           ; case cts of
334                                 Flexi       -> pprPanic "readFilledBox" (ppr box_tv)
335                                 Indirect ty -> return ty }
336
337 tcInstBoxyTyVar :: TyVar -> TcM BoxyTyVar
338 -- Instantiate with a BOXY type variable
339 tcInstBoxyTyVar tyvar = instMetaTyVar BoxTv tyvar
340 \end{code}
341
342
343 %************************************************************************
344 %*                                                                      *
345 \subsection{Putting and getting  mutable type variables}
346 %*                                                                      *
347 %************************************************************************
348
349 But it's more fun to short out indirections on the way: If this
350 version returns a TyVar, then that TyVar is unbound.  If it returns
351 any other type, then there might be bound TyVars embedded inside it.
352
353 We return Nothing iff the original box was unbound.
354
355 \begin{code}
356 data LookupTyVarResult  -- The result of a lookupTcTyVar call
357   = DoneTv TcTyVarDetails       -- SkolemTv or virgin MetaTv
358   | IndirectTv TcType
359
360 lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
361 lookupTcTyVar tyvar 
362   = ASSERT2( isTcTyVar tyvar, ppr tyvar )
363     case details of
364       SkolemTv _   -> return (DoneTv details)
365       MetaTv _ ref -> do { meta_details <- readMutVar ref
366                          ; case meta_details of
367                             Indirect ty -> return (IndirectTv ty)
368                             Flexi       -> return (DoneTv details) }
369   where
370     details =  tcTyVarDetails tyvar
371
372 {- 
373 -- gaw 2004 We aren't shorting anything out anymore, at least for now
374 getTcTyVar tyvar
375   | not (isTcTyVar tyvar)
376   = pprTrace "getTcTyVar" (ppr tyvar) $
377     returnM (Just (mkTyVarTy tyvar))
378
379   | otherwise
380   = ASSERT2( isTcTyVar tyvar, ppr tyvar )
381     readMetaTyVar tyvar                         `thenM` \ maybe_ty ->
382     case maybe_ty of
383         Just ty -> short_out ty                         `thenM` \ ty' ->
384                    writeMetaTyVar tyvar (Just ty')      `thenM_`
385                    returnM (Just ty')
386
387         Nothing    -> returnM Nothing
388
389 short_out :: TcType -> TcM TcType
390 short_out ty@(TyVarTy tyvar)
391   | not (isTcTyVar tyvar)
392   = returnM ty
393
394   | otherwise
395   = readMetaTyVar tyvar `thenM` \ maybe_ty ->
396     case maybe_ty of
397         Just ty' -> short_out ty'                       `thenM` \ ty' ->
398                     writeMetaTyVar tyvar (Just ty')     `thenM_`
399                     returnM ty'
400
401         other    -> returnM ty
402
403 short_out other_ty = returnM other_ty
404 -}
405 \end{code}
406
407
408 %************************************************************************
409 %*                                                                      *
410 \subsection{Zonking -- the exernal interfaces}
411 %*                                                                      *
412 %************************************************************************
413
414 -----------------  Type variables
415
416 \begin{code}
417 zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
418 zonkTcTyVars tyvars = mappM zonkTcTyVar tyvars
419
420 zonkTcTyVarsAndFV :: [TcTyVar] -> TcM TcTyVarSet
421 zonkTcTyVarsAndFV tyvars = mappM zonkTcTyVar tyvars     `thenM` \ tys ->
422                            returnM (tyVarsOfTypes tys)
423
424 zonkTcTyVar :: TcTyVar -> TcM TcType
425 zonkTcTyVar tyvar = ASSERT2( isTcTyVar tyvar, ppr tyvar)
426                     zonk_tc_tyvar (\ tv -> returnM (TyVarTy tv)) tyvar
427 \end{code}
428
429 -----------------  Types
430
431 \begin{code}
432 zonkTcType :: TcType -> TcM TcType
433 zonkTcType ty = zonkType (\ tv -> returnM (TyVarTy tv)) ty
434
435 zonkTcTypes :: [TcType] -> TcM [TcType]
436 zonkTcTypes tys = mappM zonkTcType tys
437
438 zonkTcClassConstraints cts = mappM zonk cts
439     where zonk (clas, tys)
440             = zonkTcTypes tys   `thenM` \ new_tys ->
441               returnM (clas, new_tys)
442
443 zonkTcThetaType :: TcThetaType -> TcM TcThetaType
444 zonkTcThetaType theta = mappM zonkTcPredType theta
445
446 zonkTcPredType :: TcPredType -> TcM TcPredType
447 zonkTcPredType (ClassP c ts)
448   = zonkTcTypes ts      `thenM` \ new_ts ->
449     returnM (ClassP c new_ts)
450 zonkTcPredType (IParam n t)
451   = zonkTcType t        `thenM` \ new_t ->
452     returnM (IParam n new_t)
453 zonkTcPredType (EqPred t1 t2)
454   = zonkTcType t1       `thenM` \ new_t1 ->
455     zonkTcType t2       `thenM` \ new_t2 ->
456     returnM (EqPred new_t1 new_t2)
457 \end{code}
458
459 -------------------  These ...ToType, ...ToKind versions
460                      are used at the end of type checking
461
462 \begin{code}
463 zonkTopTyVar :: TcTyVar -> TcM TcTyVar
464 -- zonkTopTyVar is used, at the top level, on any un-instantiated meta type variables
465 -- to default the kind of ? and ?? etc to *.  This is important to ensure that
466 -- instance declarations match.  For example consider
467 --      instance Show (a->b)
468 --      foo x = show (\_ -> True)
469 -- Then we'll get a constraint (Show (p ->q)) where p has argTypeKind (printed ??), 
470 -- and that won't match the typeKind (*) in the instance decl.
471 --
472 -- Because we are at top level, no further constraints are going to affect these
473 -- type variables, so it's time to do it by hand.  However we aren't ready
474 -- to default them fully to () or whatever, because the type-class defaulting
475 -- rules have yet to run.
476
477 zonkTopTyVar tv
478   | k `eqKind` default_k = return tv
479   | otherwise
480   = do  { tv' <- newFlexiTyVar default_k
481         ; writeMetaTyVar tv (mkTyVarTy tv') 
482         ; return tv' }
483   where
484     k = tyVarKind tv
485     default_k = defaultKind k
486
487 zonkQuantifiedTyVars :: [TcTyVar] -> TcM [TyVar]
488 zonkQuantifiedTyVars = mappM zonkQuantifiedTyVar
489
490 zonkQuantifiedTyVar :: TcTyVar -> TcM TyVar
491 -- zonkQuantifiedTyVar is applied to the a TcTyVar when quantifying over it.
492 --
493 -- The quantified type variables often include meta type variables
494 -- we want to freeze them into ordinary type variables, and
495 -- default their kind (e.g. from OpenTypeKind to TypeKind)
496 --                      -- see notes with Kind.defaultKind
497 -- The meta tyvar is updated to point to the new regular TyVar.  Now any 
498 -- bound occurences of the original type variable will get zonked to 
499 -- the immutable version.
500 --
501 -- We leave skolem TyVars alone; they are immutable.
502 zonkQuantifiedTyVar tv
503   | ASSERT( isTcTyVar tv ) 
504     isSkolemTyVar tv = return tv
505         -- It might be a skolem type variable, 
506         -- for example from a user type signature
507
508   | otherwise   -- It's a meta-type-variable
509   = do  { details <- readMetaTyVar tv
510
511         -- Create the new, frozen, regular type variable
512         ; let final_kind = defaultKind (tyVarKind tv)
513               final_tv   = mkTyVar (tyVarName tv) final_kind
514
515         -- Bind the meta tyvar to the new tyvar
516         ; case details of
517             Indirect ty -> WARN( True, ppr tv $$ ppr ty ) 
518                            return ()
519                 -- [Sept 04] I don't think this should happen
520                 -- See note [Silly Type Synonym]
521
522             Flexi -> writeMetaTyVar tv (mkTyVarTy final_tv)
523
524         -- Return the new tyvar
525         ; return final_tv }
526 \end{code}
527
528 [Silly Type Synonyms]
529
530 Consider this:
531         type C u a = u  -- Note 'a' unused
532
533         foo :: (forall a. C u a -> C u a) -> u
534         foo x = ...
535
536         bar :: Num u => u
537         bar = foo (\t -> t + t)
538
539 * From the (\t -> t+t) we get type  {Num d} =>  d -> d
540   where d is fresh.
541
542 * Now unify with type of foo's arg, and we get:
543         {Num (C d a)} =>  C d a -> C d a
544   where a is fresh.
545
546 * Now abstract over the 'a', but float out the Num (C d a) constraint
547   because it does not 'really' mention a.  (see exactTyVarsOfType)
548   The arg to foo becomes
549         /\a -> \t -> t+t
550
551 * So we get a dict binding for Num (C d a), which is zonked to give
552         a = ()
553   [Note Sept 04: now that we are zonking quantified type variables
554   on construction, the 'a' will be frozen as a regular tyvar on
555   quantification, so the floated dict will still have type (C d a).
556   Which renders this whole note moot; happily!]
557
558 * Then the /\a abstraction has a zonked 'a' in it.
559
560 All very silly.   I think its harmless to ignore the problem.  We'll end up with
561 a /\a in the final result but all the occurrences of a will be zonked to ()
562
563
564 %************************************************************************
565 %*                                                                      *
566 \subsection{Zonking -- the main work-horses: zonkType, zonkTyVar}
567 %*                                                                      *
568 %*              For internal use only!                                  *
569 %*                                                                      *
570 %************************************************************************
571
572 \begin{code}
573 -- For unbound, mutable tyvars, zonkType uses the function given to it
574 -- For tyvars bound at a for-all, zonkType zonks them to an immutable
575 --      type variable and zonks the kind too
576
577 zonkType :: (TcTyVar -> TcM Type)       -- What to do with unbound mutable type variables
578                                         -- see zonkTcType, and zonkTcTypeToType
579          -> TcType
580          -> TcM Type
581 zonkType unbound_var_fn ty
582   = go ty
583   where
584     go (NoteTy _ ty2)    = go ty2       -- Discard free-tyvar annotations
585                          
586     go (TyConApp tc tys) = mappM go tys `thenM` \ tys' ->
587                            returnM (TyConApp tc tys')
588                             
589     go (PredTy p)        = go_pred p            `thenM` \ p' ->
590                            returnM (PredTy p')
591                          
592     go (FunTy arg res)   = go arg               `thenM` \ arg' ->
593                            go res               `thenM` \ res' ->
594                            returnM (FunTy arg' res')
595                          
596     go (AppTy fun arg)   = go fun               `thenM` \ fun' ->
597                            go arg               `thenM` \ arg' ->
598                            returnM (mkAppTy fun' arg')
599                 -- NB the mkAppTy; we might have instantiated a
600                 -- type variable to a type constructor, so we need
601                 -- to pull the TyConApp to the top.
602
603         -- The two interesting cases!
604     go (TyVarTy tyvar) | isTcTyVar tyvar = zonk_tc_tyvar unbound_var_fn tyvar
605                        | otherwise       = return (TyVarTy tyvar)
606                 -- Ordinary (non Tc) tyvars occur inside quantified types
607
608     go (ForAllTy tyvar ty) = ASSERT( isImmutableTyVar tyvar )
609                              go ty              `thenM` \ ty' ->
610                              returnM (ForAllTy tyvar ty')
611
612     go_pred (ClassP c tys)   = mappM go tys     `thenM` \ tys' ->
613                                returnM (ClassP c tys')
614     go_pred (IParam n ty)    = go ty            `thenM` \ ty' ->
615                                returnM (IParam n ty')
616     go_pred (EqPred ty1 ty2) = go ty1           `thenM` \ ty1' ->
617                                go ty2           `thenM` \ ty2' ->
618                                returnM (EqPred ty1' ty2')
619
620 zonk_tc_tyvar :: (TcTyVar -> TcM Type)          -- What to do for an unbound mutable variable
621               -> TcTyVar -> TcM TcType
622 zonk_tc_tyvar unbound_var_fn tyvar 
623   | not (isMetaTyVar tyvar)     -- Skolems
624   = returnM (TyVarTy tyvar)
625
626   | otherwise                   -- Mutables
627   = do  { cts <- readMetaTyVar tyvar
628         ; case cts of
629             Flexi       -> unbound_var_fn tyvar    -- Unbound meta type variable
630             Indirect ty -> zonkType unbound_var_fn ty  }
631 \end{code}
632
633
634
635 %************************************************************************
636 %*                                                                      *
637                         Zonking kinds
638 %*                                                                      *
639 %************************************************************************
640
641 \begin{code}
642 readKindVar  :: KindVar -> TcM (MetaDetails)
643 writeKindVar :: KindVar -> TcKind -> TcM ()
644 readKindVar  kv = readMutVar (kindVarRef kv)
645 writeKindVar kv val = writeMutVar (kindVarRef kv) (Indirect val)
646
647 -------------
648 zonkTcKind :: TcKind -> TcM TcKind
649 zonkTcKind k = zonkTcType k
650
651 -------------
652 zonkTcKindToKind :: TcKind -> TcM Kind
653 -- When zonking a TcKind to a kind, we need to instantiate kind variables,
654 -- Haskell specifies that * is to be used, so we follow that.
655 zonkTcKindToKind k = zonkType (\ _ -> return liftedTypeKind) k
656 \end{code}
657                         
658 %************************************************************************
659 %*                                                                      *
660 \subsection{Checking a user type}
661 %*                                                                      *
662 %************************************************************************
663
664 When dealing with a user-written type, we first translate it from an HsType
665 to a Type, performing kind checking, and then check various things that should 
666 be true about it.  We don't want to perform these checks at the same time
667 as the initial translation because (a) they are unnecessary for interface-file
668 types and (b) when checking a mutually recursive group of type and class decls,
669 we can't "look" at the tycons/classes yet.  Also, the checks are are rather
670 diverse, and used to really mess up the other code.
671
672 One thing we check for is 'rank'.  
673
674         Rank 0:         monotypes (no foralls)
675         Rank 1:         foralls at the front only, Rank 0 inside
676         Rank 2:         foralls at the front, Rank 1 on left of fn arrow,
677
678         basic ::= tyvar | T basic ... basic
679
680         r2  ::= forall tvs. cxt => r2a
681         r2a ::= r1 -> r2a | basic
682         r1  ::= forall tvs. cxt => r0
683         r0  ::= r0 -> r0 | basic
684         
685 Another thing is to check that type synonyms are saturated. 
686 This might not necessarily show up in kind checking.
687         type A i = i
688         data T k = MkT (k Int)
689         f :: T A        -- BAD!
690
691         
692 \begin{code}
693 checkValidType :: UserTypeCtxt -> Type -> TcM ()
694 -- Checks that the type is valid for the given context
695 checkValidType ctxt ty
696   = traceTc (text "checkValidType" <+> ppr ty)  `thenM_`
697     doptM Opt_GlasgowExts       `thenM` \ gla_exts ->
698     let 
699         rank | gla_exts = Arbitrary
700              | otherwise
701              = case ctxt of     -- Haskell 98
702                  GenPatCtxt     -> Rank 0
703                  LamPatSigCtxt  -> Rank 0
704                  BindPatSigCtxt -> Rank 0
705                  DefaultDeclCtxt-> Rank 0
706                  ResSigCtxt     -> Rank 0
707                  TySynCtxt _    -> Rank 0
708                  ExprSigCtxt    -> Rank 1
709                  FunSigCtxt _   -> Rank 1
710                  ConArgCtxt _   -> Rank 1       -- We are given the type of the entire
711                                                 -- constructor, hence rank 1
712                  ForSigCtxt _   -> Rank 1
713                  SpecInstCtxt   -> Rank 1
714
715         actual_kind = typeKind ty
716
717         kind_ok = case ctxt of
718                         TySynCtxt _  -> True    -- Any kind will do
719                         ResSigCtxt   -> isSubOpenTypeKind        actual_kind
720                         ExprSigCtxt  -> isSubOpenTypeKind        actual_kind
721                         GenPatCtxt   -> isLiftedTypeKind actual_kind
722                         ForSigCtxt _ -> isLiftedTypeKind actual_kind
723                         other        -> isSubArgTypeKind    actual_kind
724         
725         ubx_tup | not gla_exts = UT_NotOk
726                 | otherwise    = case ctxt of
727                                    TySynCtxt _ -> UT_Ok
728                                    ExprSigCtxt -> UT_Ok
729                                    other       -> UT_NotOk
730                 -- Unboxed tuples ok in function results,
731                 -- but for type synonyms we allow them even at
732                 -- top level
733     in
734         -- Check that the thing has kind Type, and is lifted if necessary
735     checkTc kind_ok (kindErr actual_kind)       `thenM_`
736
737         -- Check the internal validity of the type itself
738     check_poly_type rank ubx_tup ty             `thenM_`
739
740     traceTc (text "checkValidType done" <+> ppr ty)
741 \end{code}
742
743
744 \begin{code}
745 data Rank = Rank Int | Arbitrary
746
747 decRank :: Rank -> Rank
748 decRank Arbitrary = Arbitrary
749 decRank (Rank n)  = Rank (n-1)
750
751 ----------------------------------------
752 data UbxTupFlag = UT_Ok | UT_NotOk
753         -- The "Ok" version means "ok if -fglasgow-exts is on"
754
755 ----------------------------------------
756 check_poly_type :: Rank -> UbxTupFlag -> Type -> TcM ()
757 check_poly_type (Rank 0) ubx_tup ty 
758   = check_tau_type (Rank 0) ubx_tup ty
759
760 check_poly_type rank ubx_tup ty 
761   | null tvs && null theta
762   = check_tau_type rank ubx_tup ty
763   | otherwise
764   = do  { check_valid_theta SigmaCtxt theta
765         ; check_poly_type rank ubx_tup tau      -- Allow foralls to right of arrow
766         ; checkFreeness tvs theta
767         ; checkAmbiguity tvs theta (tyVarsOfType tau) }
768   where
769     (tvs, theta, tau) = tcSplitSigmaTy ty
770    
771 ----------------------------------------
772 check_arg_type :: Type -> TcM ()
773 -- The sort of type that can instantiate a type variable,
774 -- or be the argument of a type constructor.
775 -- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
776 -- Other unboxed types are very occasionally allowed as type
777 -- arguments depending on the kind of the type constructor
778 -- 
779 -- For example, we want to reject things like:
780 --
781 --      instance Ord a => Ord (forall s. T s a)
782 -- and
783 --      g :: T s (forall b.b)
784 --
785 -- NB: unboxed tuples can have polymorphic or unboxed args.
786 --     This happens in the workers for functions returning
787 --     product types with polymorphic components.
788 --     But not in user code.
789 -- Anyway, they are dealt with by a special case in check_tau_type
790
791 check_arg_type ty 
792   = check_poly_type Arbitrary UT_NotOk ty       `thenM_` 
793     checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty)
794
795 ----------------------------------------
796 check_tau_type :: Rank -> UbxTupFlag -> Type -> TcM ()
797 -- Rank is allowed rank for function args
798 -- No foralls otherwise
799
800 check_tau_type rank ubx_tup ty@(ForAllTy _ _)       = failWithTc (forAllTyErr ty)
801 check_tau_type rank ubx_tup ty@(FunTy (PredTy _) _) = failWithTc (forAllTyErr ty)
802         -- Reject e.g. (Maybe (?x::Int => Int)), with a decent error message
803
804 -- Naked PredTys don't usually show up, but they can as a result of
805 --      {-# SPECIALISE instance Ord Char #-}
806 -- The Right Thing would be to fix the way that SPECIALISE instance pragmas
807 -- are handled, but the quick thing is just to permit PredTys here.
808 check_tau_type rank ubx_tup (PredTy sty) = getDOpts             `thenM` \ dflags ->
809                                            check_pred_ty dflags TypeCtxt sty
810
811 check_tau_type rank ubx_tup (TyVarTy _)       = returnM ()
812 check_tau_type rank ubx_tup ty@(FunTy arg_ty res_ty)
813   = check_poly_type (decRank rank) UT_NotOk arg_ty      `thenM_`
814     check_poly_type rank           UT_Ok    res_ty
815
816 check_tau_type rank ubx_tup (AppTy ty1 ty2)
817   = check_arg_type ty1 `thenM_` check_arg_type ty2
818
819 check_tau_type rank ubx_tup (NoteTy other_note ty)
820   = check_tau_type rank ubx_tup ty
821
822 check_tau_type rank ubx_tup ty@(TyConApp tc tys)
823   | isSynTyCon tc       
824   = do  {       -- It's OK to have an *over-applied* type synonym
825                 --      data Tree a b = ...
826                 --      type Foo a = Tree [a]
827                 --      f :: Foo a b -> ...
828         ; case tcView ty of
829              Just ty' -> check_tau_type rank ubx_tup ty' -- Check expansion
830              Nothing -> unless (isOpenTyCon tc           -- No expansion if open
831                                 && tyConArity tc <= length tys) $
832                           failWithTc arity_msg
833
834         ; gla_exts <- doptM Opt_GlasgowExts
835         ; if gla_exts && not (isOpenTyCon tc) then
836         -- If -fglasgow-exts then don't check the type arguments of 
837         -- *closed* synonyms.
838         -- This allows us to instantiate a synonym defn with a 
839         -- for-all type, or with a partially-applied type synonym.
840         --      e.g.   type T a b = a
841         --             type S m   = m ()
842         --             f :: S (T Int)
843         -- Here, T is partially applied, so it's illegal in H98.
844         -- But if you expand S first, then T we get just 
845         --             f :: Int
846         -- which is fine.
847                 returnM ()
848           else
849                 -- For H98, do check the type args
850                 mappM_ check_arg_type tys
851         }
852     
853   | isUnboxedTupleTyCon tc
854   = doptM Opt_GlasgowExts                       `thenM` \ gla_exts ->
855     checkTc (ubx_tup_ok gla_exts) ubx_tup_msg   `thenM_`
856     mappM_ (check_tau_type (Rank 0) UT_Ok) tys  
857                 -- Args are allowed to be unlifted, or
858                 -- more unboxed tuples, so can't use check_arg_ty
859
860   | otherwise
861   = mappM_ check_arg_type tys
862
863   where
864     ubx_tup_ok gla_exts = case ubx_tup of { UT_Ok -> gla_exts; other -> False }
865
866     n_args    = length tys
867     tc_arity  = tyConArity tc
868
869     arity_msg   = arityErr "Type synonym" (tyConName tc) tc_arity n_args
870     ubx_tup_msg = ubxArgTyErr ty
871
872 ----------------------------------------
873 forAllTyErr     ty = ptext SLIT("Illegal polymorphic or qualified type:") <+> ppr ty
874 unliftedArgErr  ty = ptext SLIT("Illegal unlifted type argument:") <+> ppr ty
875 ubxArgTyErr     ty = ptext SLIT("Illegal unboxed tuple type as function argument:") <+> ppr ty
876 kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of kind") <+> ppr kind
877 \end{code}
878
879
880
881 %************************************************************************
882 %*                                                                      *
883 \subsection{Checking a theta or source type}
884 %*                                                                      *
885 %************************************************************************
886
887 \begin{code}
888 -- Enumerate the contexts in which a "source type", <S>, can occur
889 --      Eq a 
890 -- or   ?x::Int
891 -- or   r <: {x::Int}
892 -- or   (N a) where N is a newtype
893
894 data SourceTyCtxt
895   = ClassSCCtxt Name    -- Superclasses of clas
896                         --      class <S> => C a where ...
897   | SigmaCtxt           -- Theta part of a normal for-all type
898                         --      f :: <S> => a -> a
899   | DataTyCtxt Name     -- Theta part of a data decl
900                         --      data <S> => T a = MkT a
901   | TypeCtxt            -- Source type in an ordinary type
902                         --      f :: N a -> N a
903   | InstThetaCtxt       -- Context of an instance decl
904                         --      instance <S> => C [a] where ...
905                 
906 pprSourceTyCtxt (ClassSCCtxt c) = ptext SLIT("the super-classes of class") <+> quotes (ppr c)
907 pprSourceTyCtxt SigmaCtxt       = ptext SLIT("the context of a polymorphic type")
908 pprSourceTyCtxt (DataTyCtxt tc) = ptext SLIT("the context of the data type declaration for") <+> quotes (ppr tc)
909 pprSourceTyCtxt InstThetaCtxt   = ptext SLIT("the context of an instance declaration")
910 pprSourceTyCtxt TypeCtxt        = ptext SLIT("the context of a type")
911 \end{code}
912
913 \begin{code}
914 checkValidTheta :: SourceTyCtxt -> ThetaType -> TcM ()
915 checkValidTheta ctxt theta 
916   = addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)
917
918 -------------------------
919 check_valid_theta ctxt []
920   = returnM ()
921 check_valid_theta ctxt theta
922   = getDOpts                                    `thenM` \ dflags ->
923     warnTc (notNull dups) (dupPredWarn dups)    `thenM_`
924     mappM_ (check_pred_ty dflags ctxt) theta
925   where
926     (_,dups) = removeDups tcCmpPred theta
927
928 -------------------------
929 check_pred_ty dflags ctxt pred@(ClassP cls tys)
930   = do {        -- Class predicates are valid in all contexts
931        ; checkTc (arity == n_tys) arity_err
932
933                 -- Check the form of the argument types
934        ; mappM_ check_arg_type tys
935        ; checkTc (check_class_pred_tys dflags ctxt tys)
936                  (predTyVarErr pred $$ how_to_allow)
937        }
938   where
939     class_name = className cls
940     arity      = classArity cls
941     n_tys      = length tys
942     arity_err  = arityErr "Class" class_name arity n_tys
943     how_to_allow = parens (ptext SLIT("Use -fglasgow-exts to permit this"))
944
945 check_pred_ty dflags ctxt pred@(EqPred ty1 ty2)
946   = do {        -- Equational constraints are valid in all contexts if indexed
947                 -- types are permitted
948        ; checkTc (dopt Opt_IndexedTypes dflags) (eqPredTyErr pred)
949
950                 -- Check the form of the argument types
951        ; check_eq_arg_type ty1
952        ; check_eq_arg_type ty2
953        }
954   where 
955     check_eq_arg_type = check_poly_type (Rank 0) UT_NotOk
956
957 check_pred_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty
958         -- Implicit parameters only allowed in type
959         -- signatures; not in instance decls, superclasses etc
960         -- The reason for not allowing implicit params in instances is a bit
961         -- subtle.
962         -- If we allowed        instance (?x::Int, Eq a) => Foo [a] where ...
963         -- then when we saw (e :: (?x::Int) => t) it would be unclear how to 
964         -- discharge all the potential usas of the ?x in e.   For example, a
965         -- constraint Foo [Int] might come out of e,and applying the
966         -- instance decl would show up two uses of ?x.
967
968 -- Catch-all
969 check_pred_ty dflags ctxt sty = failWithTc (badPredTyErr sty)
970
971 -------------------------
972 check_class_pred_tys dflags ctxt tys 
973   = case ctxt of
974         TypeCtxt      -> True   -- {-# SPECIALISE instance Eq (T Int) #-} is fine
975         InstThetaCtxt -> gla_exts || undecidable_ok || all tcIsTyVarTy tys
976                                 -- Further checks on head and theta in
977                                 -- checkInstTermination
978         other         -> gla_exts || all tyvar_head tys
979   where
980     gla_exts       = dopt Opt_GlasgowExts dflags
981     undecidable_ok = dopt Opt_AllowUndecidableInstances dflags
982
983 -------------------------
984 tyvar_head ty                   -- Haskell 98 allows predicates of form 
985   | tcIsTyVarTy ty = True       --      C (a ty1 .. tyn)
986   | otherwise                   -- where a is a type variable
987   = case tcSplitAppTy_maybe ty of
988         Just (ty, _) -> tyvar_head ty
989         Nothing      -> False
990 \end{code}
991
992 Check for ambiguity
993 ~~~~~~~~~~~~~~~~~~~
994           forall V. P => tau
995 is ambiguous if P contains generic variables
996 (i.e. one of the Vs) that are not mentioned in tau
997
998 However, we need to take account of functional dependencies
999 when we speak of 'mentioned in tau'.  Example:
1000         class C a b | a -> b where ...
1001 Then the type
1002         forall x y. (C x y) => x
1003 is not ambiguous because x is mentioned and x determines y
1004
1005 NB; the ambiguity check is only used for *user* types, not for types
1006 coming from inteface files.  The latter can legitimately have
1007 ambiguous types. Example
1008
1009    class S a where s :: a -> (Int,Int)
1010    instance S Char where s _ = (1,1)
1011    f:: S a => [a] -> Int -> (Int,Int)
1012    f (_::[a]) x = (a*x,b)
1013         where (a,b) = s (undefined::a)
1014
1015 Here the worker for f gets the type
1016         fw :: forall a. S a => Int -> (# Int, Int #)
1017
1018 If the list of tv_names is empty, we have a monotype, and then we
1019 don't need to check for ambiguity either, because the test can't fail
1020 (see is_ambig).
1021
1022 \begin{code}
1023 checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
1024 checkAmbiguity forall_tyvars theta tau_tyvars
1025   = mappM_ complain (filter is_ambig theta)
1026   where
1027     complain pred     = addErrTc (ambigErr pred)
1028     extended_tau_vars = grow theta tau_tyvars
1029
1030         -- Only a *class* predicate can give rise to ambiguity
1031         -- An *implicit parameter* cannot.  For example:
1032         --      foo :: (?x :: [a]) => Int
1033         --      foo = length ?x
1034         -- is fine.  The call site will suppply a particular 'x'
1035     is_ambig pred     = isClassPred  pred &&
1036                         any ambig_var (varSetElems (tyVarsOfPred pred))
1037
1038     ambig_var ct_var  = (ct_var `elem` forall_tyvars) &&
1039                         not (ct_var `elemVarSet` extended_tau_vars)
1040
1041 ambigErr pred
1042   = sep [ptext SLIT("Ambiguous constraint") <+> quotes (pprPred pred),
1043          nest 4 (ptext SLIT("At least one of the forall'd type variables mentioned by the constraint") $$
1044                  ptext SLIT("must be reachable from the type after the '=>'"))]
1045 \end{code}
1046     
1047 In addition, GHC insists that at least one type variable
1048 in each constraint is in V.  So we disallow a type like
1049         forall a. Eq b => b -> b
1050 even in a scope where b is in scope.
1051
1052 \begin{code}
1053 checkFreeness forall_tyvars theta
1054   = do  { gla_exts <- doptM Opt_GlasgowExts
1055         ; if gla_exts then return ()    -- New!  Oct06
1056           else mappM_ complain (filter is_free theta) }
1057   where    
1058     is_free pred     =  not (isIPPred pred)
1059                      && not (any bound_var (varSetElems (tyVarsOfPred pred)))
1060     bound_var ct_var = ct_var `elem` forall_tyvars
1061     complain pred    = addErrTc (freeErr pred)
1062
1063 freeErr pred
1064   = sep [ptext SLIT("All of the type variables in the constraint") <+> quotes (pprPred pred) <+>
1065                    ptext SLIT("are already in scope"),
1066          nest 4 (ptext SLIT("(at least one must be universally quantified here)"))
1067     ]
1068 \end{code}
1069
1070 \begin{code}
1071 checkThetaCtxt ctxt theta
1072   = vcat [ptext SLIT("In the context:") <+> pprTheta theta,
1073           ptext SLIT("While checking") <+> pprSourceTyCtxt ctxt ]
1074
1075 badPredTyErr sty = ptext SLIT("Illegal constraint") <+> pprPred sty
1076 eqPredTyErr  sty = ptext SLIT("Illegal equational constraint") <+> pprPred sty
1077                    $$
1078                    parens (ptext SLIT("Use -findexed-types to permit this"))
1079 predTyVarErr pred  = sep [ptext SLIT("Non type-variable argument"),
1080                           nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)]
1081 dupPredWarn dups   = ptext SLIT("Duplicate constraint(s):") <+> pprWithCommas pprPred (map head dups)
1082
1083 arityErr kind name n m
1084   = hsep [ text kind, quotes (ppr name), ptext SLIT("should have"),
1085            n_arguments <> comma, text "but has been given", int m]
1086     where
1087         n_arguments | n == 0 = ptext SLIT("no arguments")
1088                     | n == 1 = ptext SLIT("1 argument")
1089                     | True   = hsep [int n, ptext SLIT("arguments")]
1090 \end{code}
1091
1092
1093 %************************************************************************
1094 %*                                                                      *
1095 \subsection{Checking for a decent instance head type}
1096 %*                                                                      *
1097 %************************************************************************
1098
1099 @checkValidInstHead@ checks the type {\em and} its syntactic constraints:
1100 it must normally look like: @instance Foo (Tycon a b c ...) ...@
1101
1102 The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
1103 flag is on, or (2)~the instance is imported (they must have been
1104 compiled elsewhere). In these cases, we let them go through anyway.
1105
1106 We can also have instances for functions: @instance Foo (a -> b) ...@.
1107
1108 \begin{code}
1109 checkValidInstHead :: Type -> TcM (Class, [TcType])
1110
1111 checkValidInstHead ty   -- Should be a source type
1112   = case tcSplitPredTy_maybe ty of {
1113         Nothing -> failWithTc (instTypeErr (ppr ty) empty) ;
1114         Just pred -> 
1115
1116     case getClassPredTys_maybe pred of {
1117         Nothing -> failWithTc (instTypeErr (pprPred pred) empty) ;
1118         Just (clas,tys) ->
1119
1120     getDOpts                                    `thenM` \ dflags ->
1121     mappM_ check_arg_type tys                   `thenM_`
1122     check_inst_head dflags clas tys             `thenM_`
1123     returnM (clas, tys)
1124     }}
1125
1126 check_inst_head dflags clas tys
1127         -- If GlasgowExts then check at least one isn't a type variable
1128   | dopt Opt_GlasgowExts dflags
1129   = mapM_ check_one tys
1130
1131         -- WITH HASKELL 98, MUST HAVE C (T a b c)
1132   | otherwise
1133   = checkTc (isSingleton tys && tcValidInstHeadTy first_ty)
1134             (instTypeErr (pprClassPred clas tys) head_shape_msg)
1135
1136   where
1137     (first_ty : _) = tys
1138
1139     head_shape_msg = parens (text "The instance type must be of form (T a1 ... an)" $$
1140                              text "where T is not a synonym, and a1 ... an are distinct type *variables*")
1141
1142         -- For now, I only allow tau-types (not polytypes) in 
1143         -- the head of an instance decl.  
1144         --      E.g.  instance C (forall a. a->a) is rejected
1145         -- One could imagine generalising that, but I'm not sure
1146         -- what all the consequences might be
1147     check_one ty = do { check_tau_type (Rank 0) UT_NotOk ty
1148                       ; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
1149
1150 instTypeErr pp_ty msg
1151   = sep [ptext SLIT("Illegal instance declaration for") <+> quotes pp_ty, 
1152          nest 4 msg]
1153 \end{code}
1154
1155
1156 %************************************************************************
1157 %*                                                                      *
1158 \subsection{Checking instance for termination}
1159 %*                                                                      *
1160 %************************************************************************
1161
1162
1163 \begin{code}
1164 checkValidInstance :: [TyVar] -> ThetaType -> Class -> [TcType] -> TcM ()
1165 checkValidInstance tyvars theta clas inst_tys
1166   = do  { gla_exts <- doptM Opt_GlasgowExts
1167         ; undecidable_ok <- doptM Opt_AllowUndecidableInstances
1168
1169         ; checkValidTheta InstThetaCtxt theta
1170         ; checkAmbiguity tyvars theta (tyVarsOfTypes inst_tys)
1171
1172         -- Check that instance inference will terminate (if we care)
1173         -- For Haskell 98, checkValidTheta has already done that
1174         ; when (gla_exts && not undecidable_ok) $
1175           mapM_ addErrTc (checkInstTermination inst_tys theta)
1176         
1177         -- The Coverage Condition
1178         ; checkTc (undecidable_ok || checkInstCoverage clas inst_tys)
1179                   (instTypeErr (pprClassPred clas inst_tys) msg)
1180         }
1181   where
1182     msg  = parens (vcat [ptext SLIT("the Coverage Condition fails for one of the functional dependencies;"),
1183                          undecidableMsg])
1184 \end{code}
1185
1186 Termination test: the so-called "Paterson conditions" (see Section 5 of
1187 "Understanding functionsl dependencies via Constraint Handling Rules, 
1188 JFP Jan 2007).
1189
1190 We check that each assertion in the context satisfies:
1191  (1) no variable has more occurrences in the assertion than in the head, and
1192  (2) the assertion has fewer constructors and variables (taken together
1193      and counting repetitions) than the head.
1194 This is only needed with -fglasgow-exts, as Haskell 98 restrictions
1195 (which have already been checked) guarantee termination. 
1196
1197 The underlying idea is that 
1198
1199     for any ground substitution, each assertion in the
1200     context has fewer type constructors than the head.
1201
1202
1203 \begin{code}
1204 checkInstTermination :: [TcType] -> ThetaType -> [Message]
1205 checkInstTermination tys theta
1206   = mapCatMaybes check theta
1207   where
1208    fvs  = fvTypes tys
1209    size = sizeTypes tys
1210    check pred 
1211       | not (null (fvPred pred \\ fvs)) 
1212       = Just (predUndecErr pred nomoreMsg $$ parens undecidableMsg)
1213       | sizePred pred >= size
1214       = Just (predUndecErr pred smallerMsg $$ parens undecidableMsg)
1215       | otherwise
1216       = Nothing
1217
1218 predUndecErr pred msg = sep [msg,
1219                         nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)]
1220
1221 nomoreMsg = ptext SLIT("Variable occurs more often in a constraint than in the instance head")
1222 smallerMsg = ptext SLIT("Constraint is no smaller than the instance head")
1223 undecidableMsg = ptext SLIT("Use -fallow-undecidable-instances to permit this")
1224
1225 -- Free variables of a type, retaining repetitions, and expanding synonyms
1226 fvType :: Type -> [TyVar]
1227 fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
1228 fvType (TyVarTy tv)        = [tv]
1229 fvType (TyConApp _ tys)    = fvTypes tys
1230 fvType (NoteTy _ ty)       = fvType ty
1231 fvType (PredTy pred)       = fvPred pred
1232 fvType (FunTy arg res)     = fvType arg ++ fvType res
1233 fvType (AppTy fun arg)     = fvType fun ++ fvType arg
1234 fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)
1235
1236 fvTypes :: [Type] -> [TyVar]
1237 fvTypes tys                = concat (map fvType tys)
1238
1239 fvPred :: PredType -> [TyVar]
1240 fvPred (ClassP _ tys')     = fvTypes tys'
1241 fvPred (IParam _ ty)       = fvType ty
1242 fvPred (EqPred ty1 ty2)    = fvType ty1 ++ fvType ty2
1243
1244 -- Size of a type: the number of variables and constructors
1245 sizeType :: Type -> Int
1246 sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
1247 sizeType (TyVarTy _)       = 1
1248 sizeType (TyConApp _ tys)  = sizeTypes tys + 1
1249 sizeType (NoteTy _ ty)     = sizeType ty
1250 sizeType (PredTy pred)     = sizePred pred
1251 sizeType (FunTy arg res)   = sizeType arg + sizeType res + 1
1252 sizeType (AppTy fun arg)   = sizeType fun + sizeType arg
1253 sizeType (ForAllTy _ ty)   = sizeType ty
1254
1255 sizeTypes :: [Type] -> Int
1256 sizeTypes xs               = sum (map sizeType xs)
1257
1258 sizePred :: PredType -> Int
1259 sizePred (ClassP _ tys')   = sizeTypes tys'
1260 sizePred (IParam _ ty)     = sizeType ty
1261 sizePred (EqPred ty1 ty2)  = sizeType ty1 + sizeType ty2
1262 \end{code}