Add foldM_ and variants
[darcs-mirrors/vector.git] / Data / Vector / Primitive.hs
1 {-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies, ScopedTypeVariables, Rank2Types #-}
2
3 -- |
4 -- Module : Data.Vector.Primitive
5 -- Copyright : (c) Roman Leshchinskiy 2008-2010
6 -- License : BSD-style
7 --
8 -- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
9 -- Stability : experimental
10 -- Portability : non-portable
11 --
12 -- Unboxed vectors of primitive types. The use of this module is not
13 -- recommended except in very special cases. Adaptive unboxed vectors defined
14 -- in "Data.Vector.Unboxed" are significantly more flexible at no performance
15 -- cost.
16 --
17
18 module Data.Vector.Primitive (
19 -- * Primitive vectors
20 Vector, MVector(..), Prim,
21
22 -- * Accessors
23
24 -- ** Length information
25 length, null,
26
27 -- ** Indexing
28 (!), (!?), head, last,
29 unsafeIndex, unsafeHead, unsafeLast,
30
31 -- ** Monadic indexing
32 indexM, headM, lastM,
33 unsafeIndexM, unsafeHeadM, unsafeLastM,
34
35 -- ** Extracting subvectors (slicing)
36 slice, init, tail, take, drop, splitAt,
37 unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
38
39 -- * Construction
40
41 -- ** Initialisation
42 empty, singleton, replicate, generate,
43
44 -- ** Monadic initialisation
45 replicateM, create,
46
47 -- ** Unfolding
48 unfoldr, unfoldrN,
49
50 -- ** Enumeration
51 enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
52
53 -- ** Concatenation
54 cons, snoc, (++), concat,
55
56 -- ** Restricting memory usage
57 force,
58
59 -- * Modifying vectors
60
61 -- ** Bulk updates
62 (//), update_,
63 unsafeUpd, unsafeUpdate_,
64
65 -- ** Accumulations
66 accum, accumulate_,
67 unsafeAccum, unsafeAccumulate_,
68
69 -- ** Permutations
70 reverse, backpermute, unsafeBackpermute,
71
72 -- ** Safe destructive updates
73 modify,
74
75 -- * Elementwise operations
76
77 -- ** Mapping
78 map, imap, concatMap,
79
80 -- ** Monadic mapping
81 mapM, mapM_, forM, forM_,
82
83 -- ** Zipping
84 zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
85 izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
86
87 -- ** Monadic zipping
88 zipWithM, zipWithM_,
89
90 -- * Working with predicates
91
92 -- ** Filtering
93 filter, ifilter, filterM,
94 takeWhile, dropWhile,
95
96 -- ** Partitioning
97 partition, unstablePartition, span, break,
98
99 -- ** Searching
100 elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices,
101
102 -- * Folding
103 foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
104 ifoldl, ifoldl', ifoldr, ifoldr',
105
106 -- ** Specialised folds
107 all, any,
108 sum, product,
109 maximum, maximumBy, minimum, minimumBy,
110 minIndex, minIndexBy, maxIndex, maxIndexBy,
111
112 -- ** Monadic folds
113 foldM, foldM', fold1M, fold1M',
114 foldM_, foldM'_, fold1M_, fold1M'_,
115
116 -- * Prefix sums (scans)
117 prescanl, prescanl',
118 postscanl, postscanl',
119 scanl, scanl', scanl1, scanl1',
120 prescanr, prescanr',
121 postscanr, postscanr',
122 scanr, scanr', scanr1, scanr1',
123
124 -- * Conversions
125
126 -- ** Lists
127 toList, fromList, fromListN,
128
129 -- ** Other vector types
130 G.convert,
131
132 -- ** Mutable vectors
133 freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy
134 ) where
135
136 import qualified Data.Vector.Generic as G
137 import Data.Vector.Primitive.Mutable ( MVector(..) )
138 import qualified Data.Vector.Fusion.Stream as Stream
139 import Data.Primitive.ByteArray
140 import Data.Primitive ( Prim, sizeOf )
141
142 import Control.Monad ( liftM )
143 import Control.Monad.ST ( ST )
144 import Control.Monad.Primitive
145
146 import Prelude hiding ( length, null,
147 replicate, (++), concat,
148 head, last,
149 init, tail, take, drop, splitAt, reverse,
150 map, concatMap,
151 zipWith, zipWith3, zip, zip3, unzip, unzip3,
152 filter, takeWhile, dropWhile, span, break,
153 elem, notElem,
154 foldl, foldl1, foldr, foldr1,
155 all, any, sum, product, minimum, maximum,
156 scanl, scanl1, scanr, scanr1,
157 enumFromTo, enumFromThenTo,
158 mapM, mapM_ )
159
160 import qualified Prelude
161
162 import Data.Typeable ( Typeable )
163 import Data.Data ( Data(..) )
164
165 import Data.Monoid ( Monoid(..) )
166
167 -- | Unboxed vectors of primitive types
168 data Vector a = Vector {-# UNPACK #-} !Int
169 {-# UNPACK #-} !Int
170 {-# UNPACK #-} !ByteArray
171 deriving ( Typeable )
172
173 instance (Show a, Prim a) => Show (Vector a) where
174 show = (Prelude.++ " :: Data.Vector.Primitive.Vector") . ("fromList " Prelude.++) . show . toList
175
176 instance (Data a, Prim a) => Data (Vector a) where
177 gfoldl = G.gfoldl
178 toConstr _ = error "toConstr"
179 gunfold _ _ = error "gunfold"
180 dataTypeOf _ = G.mkType "Data.Vector.Primitive.Vector"
181 dataCast1 = G.dataCast
182
183
184 type instance G.Mutable Vector = MVector
185
186 instance Prim a => G.Vector Vector a where
187 {-# INLINE basicUnsafeFreeze #-}
188 basicUnsafeFreeze (MVector i n marr)
189 = Vector i n `liftM` unsafeFreezeByteArray marr
190
191 {-# INLINE basicUnsafeThaw #-}
192 basicUnsafeThaw (Vector i n arr)
193 = MVector i n `liftM` unsafeThawByteArray arr
194
195 {-# INLINE basicLength #-}
196 basicLength (Vector _ n _) = n
197
198 {-# INLINE basicUnsafeSlice #-}
199 basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr
200
201 {-# INLINE basicUnsafeIndexM #-}
202 basicUnsafeIndexM (Vector i _ arr) j = return (indexByteArray arr (i+j))
203
204 {-# INLINE basicUnsafeCopy #-}
205 basicUnsafeCopy (MVector i n dst) (Vector j _ src)
206 = memcpyByteArray' dst (i * sz) src (j * sz) (n * sz)
207 where
208 sz = sizeOf (undefined :: a)
209
210 {-# INLINE elemseq #-}
211 elemseq _ = seq
212
213 -- See http://trac.haskell.org/vector/ticket/12
214 instance (Prim a, Eq a) => Eq (Vector a) where
215 {-# INLINE (==) #-}
216 xs == ys = Stream.eq (G.stream xs) (G.stream ys)
217
218 {-# INLINE (/=) #-}
219 xs /= ys = not (Stream.eq (G.stream xs) (G.stream ys))
220
221 -- See http://trac.haskell.org/vector/ticket/12
222 instance (Prim a, Ord a) => Ord (Vector a) where
223 {-# INLINE compare #-}
224 compare xs ys = Stream.cmp (G.stream xs) (G.stream ys)
225
226 {-# INLINE (<) #-}
227 xs < ys = Stream.cmp (G.stream xs) (G.stream ys) == LT
228
229 {-# INLINE (<=) #-}
230 xs <= ys = Stream.cmp (G.stream xs) (G.stream ys) /= GT
231
232 {-# INLINE (>) #-}
233 xs > ys = Stream.cmp (G.stream xs) (G.stream ys) == GT
234
235 {-# INLINE (>=) #-}
236 xs >= ys = Stream.cmp (G.stream xs) (G.stream ys) /= LT
237
238 instance Prim a => Monoid (Vector a) where
239 {-# INLINE mempty #-}
240 mempty = empty
241
242 {-# INLINE mappend #-}
243 mappend = (++)
244
245 {-# INLINE mconcat #-}
246 mconcat = concat
247
248 -- Length
249 -- ------
250
251 -- | /O(1)/ Yield the length of the vector.
252 length :: Prim a => Vector a -> Int
253 {-# INLINE length #-}
254 length = G.length
255
256 -- | /O(1)/ Test whether a vector if empty
257 null :: Prim a => Vector a -> Bool
258 {-# INLINE null #-}
259 null = G.null
260
261 -- Indexing
262 -- --------
263
264 -- | O(1) Indexing
265 (!) :: Prim a => Vector a -> Int -> a
266 {-# INLINE (!) #-}
267 (!) = (G.!)
268
269 -- | O(1) Safe indexing
270 (!?) :: Prim a => Vector a -> Int -> Maybe a
271 {-# INLINE (!?) #-}
272 (!?) = (G.!?)
273
274 -- | /O(1)/ First element
275 head :: Prim a => Vector a -> a
276 {-# INLINE head #-}
277 head = G.head
278
279 -- | /O(1)/ Last element
280 last :: Prim a => Vector a -> a
281 {-# INLINE last #-}
282 last = G.last
283
284 -- | /O(1)/ Unsafe indexing without bounds checking
285 unsafeIndex :: Prim a => Vector a -> Int -> a
286 {-# INLINE unsafeIndex #-}
287 unsafeIndex = G.unsafeIndex
288
289 -- | /O(1)/ First element without checking if the vector is empty
290 unsafeHead :: Prim a => Vector a -> a
291 {-# INLINE unsafeHead #-}
292 unsafeHead = G.unsafeHead
293
294 -- | /O(1)/ Last element without checking if the vector is empty
295 unsafeLast :: Prim a => Vector a -> a
296 {-# INLINE unsafeLast #-}
297 unsafeLast = G.unsafeLast
298
299 -- Monadic indexing
300 -- ----------------
301
302 -- | /O(1)/ Indexing in a monad.
303 --
304 -- The monad allows operations to be strict in the vector when necessary.
305 -- Suppose vector copying is implemented like this:
306 --
307 -- > copy mv v = ... write mv i (v ! i) ...
308 --
309 -- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
310 -- would unnecessarily retain a reference to @v@ in each element written.
311 --
312 -- With 'indexM', copying can be implemented like this instead:
313 --
314 -- > copy mv v = ... do
315 -- > x <- indexM v i
316 -- > write mv i x
317 --
318 -- Here, no references to @v@ are retained because indexing (but /not/ the
319 -- elements) is evaluated eagerly.
320 --
321 indexM :: (Prim a, Monad m) => Vector a -> Int -> m a
322 {-# INLINE indexM #-}
323 indexM = G.indexM
324
325 -- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
326 -- explanation of why this is useful.
327 headM :: (Prim a, Monad m) => Vector a -> m a
328 {-# INLINE headM #-}
329 headM = G.headM
330
331 -- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
332 -- explanation of why this is useful.
333 lastM :: (Prim a, Monad m) => Vector a -> m a
334 {-# INLINE lastM #-}
335 lastM = G.lastM
336
337 -- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an
338 -- explanation of why this is useful.
339 unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a
340 {-# INLINE unsafeIndexM #-}
341 unsafeIndexM = G.unsafeIndexM
342
343 -- | /O(1)/ First element in a monad without checking for empty vectors.
344 -- See 'indexM' for an explanation of why this is useful.
345 unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a
346 {-# INLINE unsafeHeadM #-}
347 unsafeHeadM = G.unsafeHeadM
348
349 -- | /O(1)/ Last element in a monad without checking for empty vectors.
350 -- See 'indexM' for an explanation of why this is useful.
351 unsafeLastM :: (Prim a, Monad m) => Vector a -> m a
352 {-# INLINE unsafeLastM #-}
353 unsafeLastM = G.unsafeLastM
354
355 -- Extracting subvectors (slicing)
356 -- -------------------------------
357
358 -- | /O(1)/ Yield a slice of the vector without copying it. The vector must
359 -- contain at least @i+n@ elements.
360 slice :: Prim a
361 => Int -- ^ @i@ starting index
362 -> Int -- ^ @n@ length
363 -> Vector a
364 -> Vector a
365 {-# INLINE slice #-}
366 slice = G.slice
367
368 -- | /O(1)/ Yield all but the last element without copying. The vector may not
369 -- be empty.
370 init :: Prim a => Vector a -> Vector a
371 {-# INLINE init #-}
372 init = G.init
373
374 -- | /O(1)/ Yield all but the first element without copying. The vector may not
375 -- be empty.
376 tail :: Prim a => Vector a -> Vector a
377 {-# INLINE tail #-}
378 tail = G.tail
379
380 -- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
381 -- contain less than @n@ elements in which case it is returned unchanged.
382 take :: Prim a => Int -> Vector a -> Vector a
383 {-# INLINE take #-}
384 take = G.take
385
386 -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
387 -- contain less than @n@ elements in which case an empty vector is returned.
388 drop :: Prim a => Int -> Vector a -> Vector a
389 {-# INLINE drop #-}
390 drop = G.drop
391
392 -- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying.
393 --
394 -- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@
395 -- but slightly more efficient.
396 {-# INLINE splitAt #-}
397 splitAt :: Prim a => Int -> Vector a -> (Vector a, Vector a)
398 splitAt = G.splitAt
399
400 -- | /O(1)/ Yield a slice of the vector without copying. The vector must
401 -- contain at least @i+n@ elements but this is not checked.
402 unsafeSlice :: Prim a => Int -- ^ @i@ starting index
403 -> Int -- ^ @n@ length
404 -> Vector a
405 -> Vector a
406 {-# INLINE unsafeSlice #-}
407 unsafeSlice = G.unsafeSlice
408
409 -- | /O(1)/ Yield all but the last element without copying. The vector may not
410 -- be empty but this is not checked.
411 unsafeInit :: Prim a => Vector a -> Vector a
412 {-# INLINE unsafeInit #-}
413 unsafeInit = G.unsafeInit
414
415 -- | /O(1)/ Yield all but the first element without copying. The vector may not
416 -- be empty but this is not checked.
417 unsafeTail :: Prim a => Vector a -> Vector a
418 {-# INLINE unsafeTail #-}
419 unsafeTail = G.unsafeTail
420
421 -- | /O(1)/ Yield the first @n@ elements without copying. The vector must
422 -- contain at least @n@ elements but this is not checked.
423 unsafeTake :: Prim a => Int -> Vector a -> Vector a
424 {-# INLINE unsafeTake #-}
425 unsafeTake = G.unsafeTake
426
427 -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
428 -- must contain at least @n@ elements but this is not checked.
429 unsafeDrop :: Prim a => Int -> Vector a -> Vector a
430 {-# INLINE unsafeDrop #-}
431 unsafeDrop = G.unsafeDrop
432
433 -- Initialisation
434 -- --------------
435
436 -- | /O(1)/ Empty vector
437 empty :: Prim a => Vector a
438 {-# INLINE empty #-}
439 empty = G.empty
440
441 -- | /O(1)/ Vector with exactly one element
442 singleton :: Prim a => a -> Vector a
443 {-# INLINE singleton #-}
444 singleton = G.singleton
445
446 -- | /O(n)/ Vector of the given length with the same value in each position
447 replicate :: Prim a => Int -> a -> Vector a
448 {-# INLINE replicate #-}
449 replicate = G.replicate
450
451 -- | /O(n)/ Construct a vector of the given length by applying the function to
452 -- each index
453 generate :: Prim a => Int -> (Int -> a) -> Vector a
454 {-# INLINE generate #-}
455 generate = G.generate
456
457 -- Unfolding
458 -- ---------
459
460 -- | /O(n)/ Construct a vector by repeatedly applying the generator function
461 -- to a seed. The generator function yields 'Just' the next element and the
462 -- new seed or 'Nothing' if there are no more elements.
463 --
464 -- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
465 -- > = <10,9,8,7,6,5,4,3,2,1>
466 unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a
467 {-# INLINE unfoldr #-}
468 unfoldr = G.unfoldr
469
470 -- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the
471 -- generator function to the a seed. The generator function yields 'Just' the
472 -- next element and the new seed or 'Nothing' if there are no more elements.
473 --
474 -- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
475 unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
476 {-# INLINE unfoldrN #-}
477 unfoldrN = G.unfoldrN
478
479 -- Enumeration
480 -- -----------
481
482 -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@
483 -- etc. This operation is usually more efficient than 'enumFromTo'.
484 --
485 -- > enumFromN 5 3 = <5,6,7>
486 enumFromN :: (Prim a, Num a) => a -> Int -> Vector a
487 {-# INLINE enumFromN #-}
488 enumFromN = G.enumFromN
489
490 -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@,
491 -- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
492 --
493 -- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4>
494 enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a
495 {-# INLINE enumFromStepN #-}
496 enumFromStepN = G.enumFromStepN
497
498 -- | /O(n)/ Enumerate values from @x@ to @y@.
499 --
500 -- /WARNING:/ This operation can be very inefficient. If at all possible, use
501 -- 'enumFromN' instead.
502 enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a
503 {-# INLINE enumFromTo #-}
504 enumFromTo = G.enumFromTo
505
506 -- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
507 --
508 -- /WARNING:/ This operation can be very inefficient. If at all possible, use
509 -- 'enumFromStepN' instead.
510 enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a
511 {-# INLINE enumFromThenTo #-}
512 enumFromThenTo = G.enumFromThenTo
513
514 -- Concatenation
515 -- -------------
516
517 -- | /O(n)/ Prepend an element
518 cons :: Prim a => a -> Vector a -> Vector a
519 {-# INLINE cons #-}
520 cons = G.cons
521
522 -- | /O(n)/ Append an element
523 snoc :: Prim a => Vector a -> a -> Vector a
524 {-# INLINE snoc #-}
525 snoc = G.snoc
526
527 infixr 5 ++
528 -- | /O(m+n)/ Concatenate two vectors
529 (++) :: Prim a => Vector a -> Vector a -> Vector a
530 {-# INLINE (++) #-}
531 (++) = (G.++)
532
533 -- | /O(n)/ Concatenate all vectors in the list
534 concat :: Prim a => [Vector a] -> Vector a
535 {-# INLINE concat #-}
536 concat = G.concat
537
538 -- Monadic initialisation
539 -- ----------------------
540
541 -- | /O(n)/ Execute the monadic action the given number of times and store the
542 -- results in a vector.
543 replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a)
544 {-# INLINE replicateM #-}
545 replicateM = G.replicateM
546
547 -- | Execute the monadic action and freeze the resulting vector.
548 --
549 -- @
550 -- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\' }) = \<'a','b'\>
551 -- @
552 create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a
553 {-# INLINE create #-}
554 -- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
555 create p = G.create p
556
557 -- Restricting memory usage
558 -- ------------------------
559
560 -- | /O(n)/ Yield the argument but force it not to retain any extra memory,
561 -- possibly by copying it.
562 --
563 -- This is especially useful when dealing with slices. For example:
564 --
565 -- > force (slice 0 2 <huge vector>)
566 --
567 -- Here, the slice retains a reference to the huge vector. Forcing it creates
568 -- a copy of just the elements that belong to the slice and allows the huge
569 -- vector to be garbage collected.
570 force :: Prim a => Vector a -> Vector a
571 {-# INLINE force #-}
572 force = G.force
573
574 -- Bulk updates
575 -- ------------
576
577 -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector
578 -- element at position @i@ by @a@.
579 --
580 -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
581 --
582 (//) :: Prim a => Vector a -- ^ initial vector (of length @m@)
583 -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
584 -> Vector a
585 {-# INLINE (//) #-}
586 (//) = (G.//)
587
588 -- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
589 -- corresponding value @a@ from the value vector, replace the element of the
590 -- initial vector at position @i@ by @a@.
591 --
592 -- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7>
593 --
594 update_ :: Prim a
595 => Vector a -- ^ initial vector (of length @m@)
596 -> Vector Int -- ^ index vector (of length @n1@)
597 -> Vector a -- ^ value vector (of length @n2@)
598 -> Vector a
599 {-# INLINE update_ #-}
600 update_ = G.update_
601
602 -- | Same as ('//') but without bounds checking.
603 unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a
604 {-# INLINE unsafeUpd #-}
605 unsafeUpd = G.unsafeUpd
606
607 -- | Same as 'update_' but without bounds checking.
608 unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a
609 {-# INLINE unsafeUpdate_ #-}
610 unsafeUpdate_ = G.unsafeUpdate_
611
612 -- Accumulations
613 -- -------------
614
615 -- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
616 -- @a@ at position @i@ by @f a b@.
617 --
618 -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4>
619 accum :: Prim a
620 => (a -> b -> a) -- ^ accumulating function @f@
621 -> Vector a -- ^ initial vector (of length @m@)
622 -> [(Int,b)] -- ^ list of index/value pairs (of length @n@)
623 -> Vector a
624 {-# INLINE accum #-}
625 accum = G.accum
626
627 -- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
628 -- corresponding value @b@ from the the value vector,
629 -- replace the element of the initial vector at
630 -- position @i@ by @f a b@.
631 --
632 -- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
633 --
634 accumulate_ :: (Prim a, Prim b)
635 => (a -> b -> a) -- ^ accumulating function @f@
636 -> Vector a -- ^ initial vector (of length @m@)
637 -> Vector Int -- ^ index vector (of length @n1@)
638 -> Vector b -- ^ value vector (of length @n2@)
639 -> Vector a
640 {-# INLINE accumulate_ #-}
641 accumulate_ = G.accumulate_
642
643 -- | Same as 'accum' but without bounds checking.
644 unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
645 {-# INLINE unsafeAccum #-}
646 unsafeAccum = G.unsafeAccum
647
648 -- | Same as 'accumulate_' but without bounds checking.
649 unsafeAccumulate_ :: (Prim a, Prim b) =>
650 (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
651 {-# INLINE unsafeAccumulate_ #-}
652 unsafeAccumulate_ = G.unsafeAccumulate_
653
654 -- Permutations
655 -- ------------
656
657 -- | /O(n)/ Reverse a vector
658 reverse :: Prim a => Vector a -> Vector a
659 {-# INLINE reverse #-}
660 reverse = G.reverse
661
662 -- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
663 -- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is
664 -- often much more efficient.
665 --
666 -- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
667 backpermute :: Prim a => Vector a -> Vector Int -> Vector a
668 {-# INLINE backpermute #-}
669 backpermute = G.backpermute
670
671 -- | Same as 'backpermute' but without bounds checking.
672 unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a
673 {-# INLINE unsafeBackpermute #-}
674 unsafeBackpermute = G.unsafeBackpermute
675
676 -- Safe destructive updates
677 -- ------------------------
678
679 -- | Apply a destructive operation to a vector. The operation will be
680 -- performed in place if it is safe to do so and will modify a copy of the
681 -- vector otherwise.
682 --
683 -- @
684 -- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\>
685 -- @
686 modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
687 {-# INLINE modify #-}
688 modify p = G.modify p
689
690 -- Mapping
691 -- -------
692
693 -- | /O(n)/ Map a function over a vector
694 map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b
695 {-# INLINE map #-}
696 map = G.map
697
698 -- | /O(n)/ Apply a function to every element of a vector and its index
699 imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b
700 {-# INLINE imap #-}
701 imap = G.imap
702
703 -- | Map a function over a vector and concatenate the results.
704 concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b
705 {-# INLINE concatMap #-}
706 concatMap = G.concatMap
707
708 -- Monadic mapping
709 -- ---------------
710
711 -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
712 -- vector of results
713 mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b)
714 {-# INLINE mapM #-}
715 mapM = G.mapM
716
717 -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
718 -- results
719 mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m ()
720 {-# INLINE mapM_ #-}
721 mapM_ = G.mapM_
722
723 -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
724 -- vector of results. Equvalent to @flip 'mapM'@.
725 forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b)
726 {-# INLINE forM #-}
727 forM = G.forM
728
729 -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
730 -- results. Equivalent to @flip 'mapM_'@.
731 forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m ()
732 {-# INLINE forM_ #-}
733 forM_ = G.forM_
734
735 -- Zipping
736 -- -------
737
738 -- | /O(min(m,n))/ Zip two vectors with the given function.
739 zipWith :: (Prim a, Prim b, Prim c)
740 => (a -> b -> c) -> Vector a -> Vector b -> Vector c
741 {-# INLINE zipWith #-}
742 zipWith = G.zipWith
743
744 -- | Zip three vectors with the given function.
745 zipWith3 :: (Prim a, Prim b, Prim c, Prim d)
746 => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
747 {-# INLINE zipWith3 #-}
748 zipWith3 = G.zipWith3
749
750 zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
751 => (a -> b -> c -> d -> e)
752 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
753 {-# INLINE zipWith4 #-}
754 zipWith4 = G.zipWith4
755
756 zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
757 Prim f)
758 => (a -> b -> c -> d -> e -> f)
759 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
760 -> Vector f
761 {-# INLINE zipWith5 #-}
762 zipWith5 = G.zipWith5
763
764 zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
765 Prim f, Prim g)
766 => (a -> b -> c -> d -> e -> f -> g)
767 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
768 -> Vector f -> Vector g
769 {-# INLINE zipWith6 #-}
770 zipWith6 = G.zipWith6
771
772 -- | /O(min(m,n))/ Zip two vectors with a function that also takes the
773 -- elements' indices.
774 izipWith :: (Prim a, Prim b, Prim c)
775 => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
776 {-# INLINE izipWith #-}
777 izipWith = G.izipWith
778
779 -- | Zip three vectors and their indices with the given function.
780 izipWith3 :: (Prim a, Prim b, Prim c, Prim d)
781 => (Int -> a -> b -> c -> d)
782 -> Vector a -> Vector b -> Vector c -> Vector d
783 {-# INLINE izipWith3 #-}
784 izipWith3 = G.izipWith3
785
786 izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
787 => (Int -> a -> b -> c -> d -> e)
788 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
789 {-# INLINE izipWith4 #-}
790 izipWith4 = G.izipWith4
791
792 izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
793 Prim f)
794 => (Int -> a -> b -> c -> d -> e -> f)
795 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
796 -> Vector f
797 {-# INLINE izipWith5 #-}
798 izipWith5 = G.izipWith5
799
800 izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
801 Prim f, Prim g)
802 => (Int -> a -> b -> c -> d -> e -> f -> g)
803 -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
804 -> Vector f -> Vector g
805 {-# INLINE izipWith6 #-}
806 izipWith6 = G.izipWith6
807
808 -- Monadic zipping
809 -- ---------------
810
811 -- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
812 -- vector of results
813 zipWithM :: (Monad m, Prim a, Prim b, Prim c)
814 => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
815 {-# INLINE zipWithM #-}
816 zipWithM = G.zipWithM
817
818 -- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
819 -- results
820 zipWithM_ :: (Monad m, Prim a, Prim b)
821 => (a -> b -> m c) -> Vector a -> Vector b -> m ()
822 {-# INLINE zipWithM_ #-}
823 zipWithM_ = G.zipWithM_
824
825 -- Filtering
826 -- ---------
827
828 -- | /O(n)/ Drop elements that do not satisfy the predicate
829 filter :: Prim a => (a -> Bool) -> Vector a -> Vector a
830 {-# INLINE filter #-}
831 filter = G.filter
832
833 -- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to
834 -- values and their indices
835 ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a
836 {-# INLINE ifilter #-}
837 ifilter = G.ifilter
838
839 -- | /O(n)/ Drop elements that do not satisfy the monadic predicate
840 filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a)
841 {-# INLINE filterM #-}
842 filterM = G.filterM
843
844 -- | /O(n)/ Yield the longest prefix of elements satisfying the predicate
845 -- without copying.
846 takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
847 {-# INLINE takeWhile #-}
848 takeWhile = G.takeWhile
849
850 -- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
851 -- without copying.
852 dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
853 {-# INLINE dropWhile #-}
854 dropWhile = G.dropWhile
855
856 -- Parititioning
857 -- -------------
858
859 -- | /O(n)/ Split the vector in two parts, the first one containing those
860 -- elements that satisfy the predicate and the second one those that don't. The
861 -- relative order of the elements is preserved at the cost of a sometimes
862 -- reduced performance compared to 'unstablePartition'.
863 partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
864 {-# INLINE partition #-}
865 partition = G.partition
866
867 -- | /O(n)/ Split the vector in two parts, the first one containing those
868 -- elements that satisfy the predicate and the second one those that don't.
869 -- The order of the elements is not preserved but the operation is often
870 -- faster than 'partition'.
871 unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
872 {-# INLINE unstablePartition #-}
873 unstablePartition = G.unstablePartition
874
875 -- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
876 -- the predicate and the rest without copying.
877 span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
878 {-# INLINE span #-}
879 span = G.span
880
881 -- | /O(n)/ Split the vector into the longest prefix of elements that do not
882 -- satisfy the predicate and the rest without copying.
883 break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
884 {-# INLINE break #-}
885 break = G.break
886
887 -- Searching
888 -- ---------
889
890 infix 4 `elem`
891 -- | /O(n)/ Check if the vector contains an element
892 elem :: (Prim a, Eq a) => a -> Vector a -> Bool
893 {-# INLINE elem #-}
894 elem = G.elem
895
896 infix 4 `notElem`
897 -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem')
898 notElem :: (Prim a, Eq a) => a -> Vector a -> Bool
899 {-# INLINE notElem #-}
900 notElem = G.notElem
901
902 -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
903 -- if no such element exists.
904 find :: Prim a => (a -> Bool) -> Vector a -> Maybe a
905 {-# INLINE find #-}
906 find = G.find
907
908 -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
909 -- or 'Nothing' if no such element exists.
910 findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int
911 {-# INLINE findIndex #-}
912 findIndex = G.findIndex
913
914 -- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
915 -- order.
916 findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int
917 {-# INLINE findIndices #-}
918 findIndices = G.findIndices
919
920 -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or
921 -- 'Nothing' if the vector does not contain the element. This is a specialised
922 -- version of 'findIndex'.
923 elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int
924 {-# INLINE elemIndex #-}
925 elemIndex = G.elemIndex
926
927 -- | /O(n)/ Yield the indices of all occurences of the given element in
928 -- ascending order. This is a specialised version of 'findIndices'.
929 elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int
930 {-# INLINE elemIndices #-}
931 elemIndices = G.elemIndices
932
933 -- Folding
934 -- -------
935
936 -- | /O(n)/ Left fold
937 foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a
938 {-# INLINE foldl #-}
939 foldl = G.foldl
940
941 -- | /O(n)/ Left fold on non-empty vectors
942 foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a
943 {-# INLINE foldl1 #-}
944 foldl1 = G.foldl1
945
946 -- | /O(n)/ Left fold with strict accumulator
947 foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a
948 {-# INLINE foldl' #-}
949 foldl' = G.foldl'
950
951 -- | /O(n)/ Left fold on non-empty vectors with strict accumulator
952 foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a
953 {-# INLINE foldl1' #-}
954 foldl1' = G.foldl1'
955
956 -- | /O(n)/ Right fold
957 foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b
958 {-# INLINE foldr #-}
959 foldr = G.foldr
960
961 -- | /O(n)/ Right fold on non-empty vectors
962 foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a
963 {-# INLINE foldr1 #-}
964 foldr1 = G.foldr1
965
966 -- | /O(n)/ Right fold with a strict accumulator
967 foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b
968 {-# INLINE foldr' #-}
969 foldr' = G.foldr'
970
971 -- | /O(n)/ Right fold on non-empty vectors with strict accumulator
972 foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a
973 {-# INLINE foldr1' #-}
974 foldr1' = G.foldr1'
975
976 -- | /O(n)/ Left fold (function applied to each element and its index)
977 ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
978 {-# INLINE ifoldl #-}
979 ifoldl = G.ifoldl
980
981 -- | /O(n)/ Left fold with strict accumulator (function applied to each element
982 -- and its index)
983 ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
984 {-# INLINE ifoldl' #-}
985 ifoldl' = G.ifoldl'
986
987 -- | /O(n)/ Right fold (function applied to each element and its index)
988 ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
989 {-# INLINE ifoldr #-}
990 ifoldr = G.ifoldr
991
992 -- | /O(n)/ Right fold with strict accumulator (function applied to each
993 -- element and its index)
994 ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
995 {-# INLINE ifoldr' #-}
996 ifoldr' = G.ifoldr'
997
998 -- Specialised folds
999 -- -----------------
1000
1001 -- | /O(n)/ Check if all elements satisfy the predicate.
1002 all :: Prim a => (a -> Bool) -> Vector a -> Bool
1003 {-# INLINE all #-}
1004 all = G.all
1005
1006 -- | /O(n)/ Check if any element satisfies the predicate.
1007 any :: Prim a => (a -> Bool) -> Vector a -> Bool
1008 {-# INLINE any #-}
1009 any = G.any
1010
1011 -- | /O(n)/ Compute the sum of the elements
1012 sum :: (Prim a, Num a) => Vector a -> a
1013 {-# INLINE sum #-}
1014 sum = G.sum
1015
1016 -- | /O(n)/ Compute the produce of the elements
1017 product :: (Prim a, Num a) => Vector a -> a
1018 {-# INLINE product #-}
1019 product = G.product
1020
1021 -- | /O(n)/ Yield the maximum element of the vector. The vector may not be
1022 -- empty.
1023 maximum :: (Prim a, Ord a) => Vector a -> a
1024 {-# INLINE maximum #-}
1025 maximum = G.maximum
1026
1027 -- | /O(n)/ Yield the maximum element of the vector according to the given
1028 -- comparison function. The vector may not be empty.
1029 maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
1030 {-# INLINE maximumBy #-}
1031 maximumBy = G.maximumBy
1032
1033 -- | /O(n)/ Yield the minimum element of the vector. The vector may not be
1034 -- empty.
1035 minimum :: (Prim a, Ord a) => Vector a -> a
1036 {-# INLINE minimum #-}
1037 minimum = G.minimum
1038
1039 -- | /O(n)/ Yield the minimum element of the vector according to the given
1040 -- comparison function. The vector may not be empty.
1041 minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
1042 {-# INLINE minimumBy #-}
1043 minimumBy = G.minimumBy
1044
1045 -- | /O(n)/ Yield the index of the maximum element of the vector. The vector
1046 -- may not be empty.
1047 maxIndex :: (Prim a, Ord a) => Vector a -> Int
1048 {-# INLINE maxIndex #-}
1049 maxIndex = G.maxIndex
1050
1051 -- | /O(n)/ Yield the index of the maximum element of the vector according to
1052 -- the given comparison function. The vector may not be empty.
1053 maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
1054 {-# INLINE maxIndexBy #-}
1055 maxIndexBy = G.maxIndexBy
1056
1057 -- | /O(n)/ Yield the index of the minimum element of the vector. The vector
1058 -- may not be empty.
1059 minIndex :: (Prim a, Ord a) => Vector a -> Int
1060 {-# INLINE minIndex #-}
1061 minIndex = G.minIndex
1062
1063 -- | /O(n)/ Yield the index of the minimum element of the vector according to
1064 -- the given comparison function. The vector may not be empty.
1065 minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
1066 {-# INLINE minIndexBy #-}
1067 minIndexBy = G.minIndexBy
1068
1069 -- Monadic folds
1070 -- -------------
1071
1072 -- | /O(n)/ Monadic fold
1073 foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
1074 {-# INLINE foldM #-}
1075 foldM = G.foldM
1076
1077 -- | /O(n)/ Monadic fold over non-empty vectors
1078 fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
1079 {-# INLINE fold1M #-}
1080 fold1M = G.fold1M
1081
1082 -- | /O(n)/ Monadic fold with strict accumulator
1083 foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
1084 {-# INLINE foldM' #-}
1085 foldM' = G.foldM'
1086
1087 -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
1088 fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
1089 {-# INLINE fold1M' #-}
1090 fold1M' = G.fold1M'
1091
1092 -- | /O(n)/ Monadic fold that discards the result
1093 foldM_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
1094 {-# INLINE foldM_ #-}
1095 foldM_ = G.foldM_
1096
1097 -- | /O(n)/ Monadic fold over non-empty vectors that discards the result
1098 fold1M_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
1099 {-# INLINE fold1M_ #-}
1100 fold1M_ = G.fold1M_
1101
1102 -- | /O(n)/ Monadic fold with strict accumulator that discards the result
1103 foldM'_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
1104 {-# INLINE foldM'_ #-}
1105 foldM'_ = G.foldM'_
1106
1107 -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
1108 -- that discards the result
1109 fold1M'_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
1110 {-# INLINE fold1M'_ #-}
1111 fold1M'_ = G.fold1M'_
1112
1113 -- Prefix sums (scans)
1114 -- -------------------
1115
1116 -- | /O(n)/ Prescan
1117 --
1118 -- @
1119 -- prescanl f z = 'init' . 'scanl' f z
1120 -- @
1121 --
1122 -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@
1123 --
1124 prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1125 {-# INLINE prescanl #-}
1126 prescanl = G.prescanl
1127
1128 -- | /O(n)/ Prescan with strict accumulator
1129 prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1130 {-# INLINE prescanl' #-}
1131 prescanl' = G.prescanl'
1132
1133 -- | /O(n)/ Scan
1134 --
1135 -- @
1136 -- postscanl f z = 'tail' . 'scanl' f z
1137 -- @
1138 --
1139 -- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@
1140 --
1141 postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1142 {-# INLINE postscanl #-}
1143 postscanl = G.postscanl
1144
1145 -- | /O(n)/ Scan with strict accumulator
1146 postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1147 {-# INLINE postscanl' #-}
1148 postscanl' = G.postscanl'
1149
1150 -- | /O(n)/ Haskell-style scan
1151 --
1152 -- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
1153 -- > where y1 = z
1154 -- > yi = f y(i-1) x(i-1)
1155 --
1156 -- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@
1157 --
1158 scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1159 {-# INLINE scanl #-}
1160 scanl = G.scanl
1161
1162 -- | /O(n)/ Haskell-style scan with strict accumulator
1163 scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
1164 {-# INLINE scanl' #-}
1165 scanl' = G.scanl'
1166
1167 -- | /O(n)/ Scan over a non-empty vector
1168 --
1169 -- > scanl f <x1,...,xn> = <y1,...,yn>
1170 -- > where y1 = x1
1171 -- > yi = f y(i-1) xi
1172 --
1173 scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
1174 {-# INLINE scanl1 #-}
1175 scanl1 = G.scanl1
1176
1177 -- | /O(n)/ Scan over a non-empty vector with a strict accumulator
1178 scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
1179 {-# INLINE scanl1' #-}
1180 scanl1' = G.scanl1'
1181
1182 -- | /O(n)/ Right-to-left prescan
1183 --
1184 -- @
1185 -- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
1186 -- @
1187 --
1188 prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1189 {-# INLINE prescanr #-}
1190 prescanr = G.prescanr
1191
1192 -- | /O(n)/ Right-to-left prescan with strict accumulator
1193 prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1194 {-# INLINE prescanr' #-}
1195 prescanr' = G.prescanr'
1196
1197 -- | /O(n)/ Right-to-left scan
1198 postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1199 {-# INLINE postscanr #-}
1200 postscanr = G.postscanr
1201
1202 -- | /O(n)/ Right-to-left scan with strict accumulator
1203 postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1204 {-# INLINE postscanr' #-}
1205 postscanr' = G.postscanr'
1206
1207 -- | /O(n)/ Right-to-left Haskell-style scan
1208 scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1209 {-# INLINE scanr #-}
1210 scanr = G.scanr
1211
1212 -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator
1213 scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
1214 {-# INLINE scanr' #-}
1215 scanr' = G.scanr'
1216
1217 -- | /O(n)/ Right-to-left scan over a non-empty vector
1218 scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
1219 {-# INLINE scanr1 #-}
1220 scanr1 = G.scanr1
1221
1222 -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict
1223 -- accumulator
1224 scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
1225 {-# INLINE scanr1' #-}
1226 scanr1' = G.scanr1'
1227
1228 -- Conversions - Lists
1229 -- ------------------------
1230
1231 -- | /O(n)/ Convert a vector to a list
1232 toList :: Prim a => Vector a -> [a]
1233 {-# INLINE toList #-}
1234 toList = G.toList
1235
1236 -- | /O(n)/ Convert a list to a vector
1237 fromList :: Prim a => [a] -> Vector a
1238 {-# INLINE fromList #-}
1239 fromList = G.fromList
1240
1241 -- | /O(n)/ Convert the first @n@ elements of a list to a vector
1242 --
1243 -- @
1244 -- fromListN n xs = 'fromList' ('take' n xs)
1245 -- @
1246 fromListN :: Prim a => Int -> [a] -> Vector a
1247 {-# INLINE fromListN #-}
1248 fromListN = G.fromListN
1249
1250 -- Conversions - Mutable vectors
1251 -- -----------------------------
1252
1253 -- | /O(1)/ Unsafe convert a mutable vector to an immutable one without
1254 -- copying. The mutable vector may not be used after this operation.
1255 unsafeFreeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
1256 {-# INLINE unsafeFreeze #-}
1257 unsafeFreeze = G.unsafeFreeze
1258
1259 -- | /O(1)/ Unsafely convert an immutable vector to a mutable one without
1260 -- copying. The immutable vector may not be used after this operation.
1261 unsafeThaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
1262 {-# INLINE unsafeThaw #-}
1263 unsafeThaw = G.unsafeThaw
1264
1265 -- | /O(n)/ Yield a mutable copy of the immutable vector.
1266 thaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
1267 {-# INLINE thaw #-}
1268 thaw = G.thaw
1269
1270 -- | /O(n)/ Yield an immutable copy of the mutable vector.
1271 freeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
1272 {-# INLINE freeze #-}
1273 freeze = G.freeze
1274
1275 -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
1276 -- have the same length. This is not checked.
1277 unsafeCopy
1278 :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
1279 {-# INLINE unsafeCopy #-}
1280 unsafeCopy = G.unsafeCopy
1281
1282 -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
1283 -- have the same length.
1284 copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
1285 {-# INLINE copy #-}
1286 copy = G.copy
1287
1288