Add tests for constructN and constructrN
[darcs-mirrors/vector.git] / tests / Tests / Vector.hs
1 module Tests.Vector (tests) where
2
3 import Boilerplater
4 import Utilities
5
6 import qualified Data.Vector.Generic as V
7 import qualified Data.Vector
8 import qualified Data.Vector.Primitive
9 import qualified Data.Vector.Storable
10 import qualified Data.Vector.Unboxed
11 import qualified Data.Vector.Fusion.Stream as S
12
13 import Test.QuickCheck
14
15 import Test.Framework
16 import Test.Framework.Providers.QuickCheck2
17
18 import Text.Show.Functions ()
19 import Data.List
20 import System.Random (Random)
21
22 #define COMMON_CONTEXT(a, v) \
23 VANILLA_CONTEXT(a, v), VECTOR_CONTEXT(a, v)
24
25 #define VANILLA_CONTEXT(a, v) \
26 Eq a, Show a, Arbitrary a, CoArbitrary a, TestData a, Model a ~ a, EqTest a ~ Property
27
28 #define VECTOR_CONTEXT(a, v) \
29 Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a), TestData (v a), Model (v a) ~ [a], EqTest (v a) ~ Property, V.Vector v a
30
31 -- TODO: implement Vector equivalents of list functions for some of the commented out properties
32
33 -- TODO: test and implement some of these other Prelude functions:
34 -- mapM *
35 -- mapM_ *
36 -- sequence
37 -- sequence_
38 -- sum *
39 -- product *
40 -- scanl *
41 -- scanl1 *
42 -- scanr *
43 -- scanr1 *
44 -- lookup *
45 -- lines
46 -- words
47 -- unlines
48 -- unwords
49 -- NB: this is an exhaustive list of all Prelude list functions that make sense for vectors.
50 -- Ones with *s are the most plausible candidates.
51
52 -- TODO: add tests for the other extra functions
53 -- IVector exports still needing tests:
54 -- copy,
55 -- slice,
56 -- (//), update, bpermute,
57 -- prescanl, prescanl',
58 -- new,
59 -- unsafeSlice, unsafeIndex,
60 -- vlength, vnew
61
62 -- TODO: test non-IVector stuff?
63
64 testSanity :: forall a v. (COMMON_CONTEXT(a, v)) => v a -> [Test]
65 testSanity _ = [
66 testProperty "fromList.toList == id" prop_fromList_toList,
67 testProperty "toList.fromList == id" prop_toList_fromList,
68 testProperty "unstream.stream == id" prop_unstream_stream,
69 testProperty "stream.unstream == id" prop_stream_unstream
70 ]
71 where
72 prop_fromList_toList (v :: v a) = (V.fromList . V.toList) v == v
73 prop_toList_fromList (l :: [a]) = ((V.toList :: v a -> [a]) . V.fromList) l == l
74 prop_unstream_stream (v :: v a) = (V.unstream . V.stream) v == v
75 prop_stream_unstream (s :: S.Stream a) = ((V.stream :: v a -> S.Stream a) . V.unstream) s == s
76
77 testPolymorphicFunctions :: forall a v. (COMMON_CONTEXT(a, v), VECTOR_CONTEXT(Int, v)) => v a -> [Test]
78 testPolymorphicFunctions _ = $(testProperties [
79 'prop_eq,
80
81 'prop_length, 'prop_null,
82
83 'prop_empty, 'prop_singleton, 'prop_replicate,
84 'prop_cons, 'prop_snoc, 'prop_append, 'prop_force, 'prop_generate,
85
86 'prop_head, 'prop_last, 'prop_index,
87 'prop_unsafeHead, 'prop_unsafeLast, 'prop_unsafeIndex,
88
89 'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
90
91 'prop_accum, 'prop_upd, 'prop_backpermute, 'prop_reverse,
92
93 'prop_map, 'prop_zipWith, 'prop_zipWith3,
94 'prop_imap, 'prop_izipWith, 'prop_izipWith3,
95
96 'prop_filter, 'prop_ifilter, 'prop_takeWhile, 'prop_dropWhile,
97 'prop_partition, 'prop_span, 'prop_break,
98
99 'prop_elem, 'prop_notElem,
100 'prop_find, 'prop_findIndex, 'prop_findIndices,
101 'prop_elemIndex, 'prop_elemIndices,
102
103 'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
104 'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
105 'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
106
107 'prop_all, 'prop_any,
108
109 'prop_prescanl, 'prop_prescanl',
110 'prop_postscanl, 'prop_postscanl',
111 'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
112
113 'prop_prescanr, 'prop_prescanr',
114 'prop_postscanr, 'prop_postscanr',
115 'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
116
117 'prop_concatMap, {- ,
118 'prop_unfoldr -}
119 'prop_constructN, 'prop_constructrN
120 ])
121 where
122 -- Prelude
123 prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)
124
125 prop_length :: P (v a -> Int) = V.length `eq` length
126 prop_null :: P (v a -> Bool) = V.null `eq` null
127
128 prop_empty :: P (v a) = V.empty `eq` []
129 prop_singleton :: P (a -> v a) = V.singleton `eq` singleton
130 prop_replicate :: P (Int -> a -> v a)
131 = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
132 prop_cons :: P (a -> v a -> v a) = V.cons `eq` (:)
133 prop_snoc :: P (v a -> a -> v a) = V.snoc `eq` snoc
134 prop_append :: P (v a -> v a -> v a) = (V.++) `eq` (++)
135 prop_force :: P (v a -> v a) = V.force `eq` id
136 prop_generate :: P (Int -> (Int -> a) -> v a)
137 = (\n _ -> n < 1000) ===> V.generate `eq` generate
138
139 prop_head :: P (v a -> a) = not . V.null ===> V.head `eq` head
140 prop_last :: P (v a -> a) = not . V.null ===> V.last `eq` last
141 prop_index = \xs ->
142 not (V.null xs) ==>
143 forAll (choose (0, V.length xs-1)) $ \i ->
144 unP prop xs i
145 where
146 prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
147 prop_unsafeHead :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
148 prop_unsafeLast :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
149 prop_unsafeIndex = \xs ->
150 not (V.null xs) ==>
151 forAll (choose (0, V.length xs-1)) $ \i ->
152 unP prop xs i
153 where
154 prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)
155
156 prop_slice = \xs ->
157 forAll (choose (0, V.length xs)) $ \i ->
158 forAll (choose (0, V.length xs - i)) $ \n ->
159 unP prop i n xs
160 where
161 prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice
162
163 prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
164 prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
165 prop_take :: P (Int -> v a -> v a) = V.take `eq` take
166 prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
167
168 prop_accum = \f xs ->
169 forAll (index_value_pairs (V.length xs)) $ \ps ->
170 unP prop f xs ps
171 where
172 prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
173 = V.accum `eq` accum
174
175 prop_upd = \xs ->
176 forAll (index_value_pairs (V.length xs)) $ \ps ->
177 unP prop xs ps
178 where
179 prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
180
181 prop_backpermute = \xs ->
182 forAll (indices (V.length xs)) $ \is ->
183 unP prop xs (V.fromList is)
184 where
185 prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute
186
187 prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse
188
189 prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
190 prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
191 prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
192 = V.zipWith3 `eq` zipWith3
193 prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
194 prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
195 prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
196 = V.izipWith3 `eq` izipWith3
197
198 prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
199 prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
200 prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
201 prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
202 prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
203 = V.partition `eq` partition
204 prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
205 prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
206
207 prop_elem :: P (a -> v a -> Bool) = V.elem `eq` elem
208 prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
209 prop_find :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
210 prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
211 = V.findIndex `eq` findIndex
212 prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
213 = V.findIndices `eq` findIndices
214 prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
215 prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices
216
217 prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
218 prop_foldl1 :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
219 V.foldl1 `eq` foldl1
220 prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
221 prop_foldl1' :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
222 V.foldl1' `eq` foldl1'
223 prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
224 prop_foldr1 :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
225 V.foldr1 `eq` foldr1
226 prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
227 prop_foldr1' :: P ((a -> a -> a) -> v a -> a) = notNull2 ===>
228 V.foldr1' `eq` foldr1
229 prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
230 = V.ifoldl `eq` ifoldl
231 prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
232 = V.ifoldl' `eq` ifoldl
233 prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
234 = V.ifoldr `eq` ifoldr
235 prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
236 = V.ifoldr' `eq` ifoldr
237
238 prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
239 prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any
240
241 prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
242 = V.prescanl `eq` prescanl
243 prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
244 = V.prescanl' `eq` prescanl
245 prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
246 = V.postscanl `eq` postscanl
247 prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
248 = V.postscanl' `eq` postscanl
249 prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
250 = V.scanl `eq` scanl
251 prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
252 = V.scanl' `eq` scanl
253 prop_scanl1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
254 V.scanl1 `eq` scanl1
255 prop_scanl1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
256 V.scanl1' `eq` scanl1
257
258 prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
259 = V.prescanr `eq` prescanr
260 prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
261 = V.prescanr' `eq` prescanr
262 prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
263 = V.postscanr `eq` postscanr
264 prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
265 = V.postscanr' `eq` postscanr
266 prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
267 = V.scanr `eq` scanr
268 prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
269 = V.scanr' `eq` scanr
270 prop_scanr1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
271 V.scanr1 `eq` scanr1
272 prop_scanr1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
273 V.scanr1' `eq` scanr1
274
275 prop_concatMap = forAll arbitrary $ \xs ->
276 forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
277 where
278 prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap
279
280 --prop_span = (V.span :: (a -> Bool) -> v a -> (v a, v a)) `eq2` span
281 --prop_break = (V.break :: (a -> Bool) -> v a -> (v a, v a)) `eq2` break
282 --prop_splitAt = (V.splitAt :: Int -> v a -> (v a, v a)) `eq2` splitAt
283 --prop_all = (V.all :: (a -> Bool) -> v a -> Bool) `eq2` all
284 --prop_any = (V.any :: (a -> Bool) -> v a -> Bool) `eq2` any
285
286 -- Data.List
287 --prop_findIndices = V.findIndices `eq2` (findIndices :: (a -> Bool) -> v a -> v Int)
288 --prop_isPrefixOf = V.isPrefixOf `eq2` (isPrefixOf :: v a -> v a -> Bool)
289 --prop_elemIndex = V.elemIndex `eq2` (elemIndex :: a -> v a -> Maybe Int)
290 --prop_elemIndices = V.elemIndices `eq2` (elemIndices :: a -> v a -> v Int)
291 --
292 --prop_mapAccumL = eq3
293 -- (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B -> (X, B))
294 -- ( mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
295 --
296 --prop_mapAccumR = eq3
297 -- (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B -> (X, B))
298 -- ( mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
299
300 -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
301 -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
302 limitUnfolds f (theirs, ours) | ours >= 0
303 , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
304 | otherwise = Nothing
305 prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
306 = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
307 `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
308
309 prop_constructN = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
310 where
311 prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []
312
313 constructN xs 0 _ = xs
314 constructN xs n f = constructN (xs ++ [f xs]) (n-1) f
315
316 prop_constructrN = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
317 where
318 prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []
319
320 constructrN xs 0 _ = xs
321 constructrN xs n f = constructrN (f xs : xs) (n-1) f
322
323 testTuplyFunctions:: forall a v. (COMMON_CONTEXT(a, v), VECTOR_CONTEXT((a, a), v), VECTOR_CONTEXT((a, a, a), v)) => v a -> [Test]
324 testTuplyFunctions _ = $(testProperties ['prop_zip, 'prop_zip3, 'prop_unzip, 'prop_unzip3])
325 where
326 prop_zip :: P (v a -> v a -> v (a, a)) = V.zip `eq` zip
327 prop_zip3 :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
328 prop_unzip :: P (v (a, a) -> (v a, v a)) = V.unzip `eq` unzip
329 prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a)) = V.unzip3 `eq` unzip3
330
331 testOrdFunctions :: forall a v. (COMMON_CONTEXT(a, v), Ord a, Ord (v a)) => v a -> [Test]
332 testOrdFunctions _ = $(testProperties
333 ['prop_compare,
334 'prop_maximum, 'prop_minimum,
335 'prop_minIndex, 'prop_maxIndex ])
336 where
337 prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
338 prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
339 prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
340 prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
341 prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
342
343 testEnumFunctions :: forall a v. (COMMON_CONTEXT(a, v), Enum a, Ord a, Num a, Random a) => v a -> [Test]
344 testEnumFunctions _ = $(testProperties
345 [ 'prop_enumFromN, 'prop_enumFromThenN,
346 'prop_enumFromTo, 'prop_enumFromThenTo])
347 where
348 prop_enumFromN :: P (a -> Int -> v a)
349 = (\_ n -> n < 1000)
350 ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)
351
352 prop_enumFromThenN :: P (a -> a -> Int -> v a)
353 = (\_ _ n -> n < 1000)
354 ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)
355
356 prop_enumFromTo = \m ->
357 forAll (choose (-2,100)) $ \n ->
358 unP prop m (m+n)
359 where
360 prop :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo
361
362 prop_enumFromThenTo = \i j ->
363 j /= i ==>
364 forAll (choose (ks i j)) $ \k ->
365 unP prop i j k
366 where
367 prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo
368
369 ks i j | j < i = (i-d*100, i+d*2)
370 | otherwise = (i-d*2, i+d*100)
371 where
372 d = abs (j-i)
373
374 testBoolFunctions :: forall v. (COMMON_CONTEXT(Bool, v)) => v Bool -> [Test]
375 testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
376 where
377 prop_and :: P (v Bool -> Bool) = V.and `eq` and
378 prop_or :: P (v Bool -> Bool) = V.or `eq` or
379
380 testNumFunctions :: forall a v. (COMMON_CONTEXT(a, v), Num a) => v a -> [Test]
381 testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
382 where
383 prop_sum :: P (v a -> a) = V.sum `eq` sum
384 prop_product :: P (v a -> a) = V.product `eq` product
385
386 testNestedVectorFunctions :: forall a v. (COMMON_CONTEXT(a, v)) => v a -> [Test]
387 testNestedVectorFunctions _ = $(testProperties [])
388 where
389 -- Prelude
390 --prop_concat = (V.concat :: [v a] -> v a) `eq1` concat
391
392 -- Data.List
393 --prop_transpose = V.transpose `eq1` (transpose :: [v a] -> [v a])
394 --prop_group = V.group `eq1` (group :: v a -> [v a])
395 --prop_inits = V.inits `eq1` (inits :: v a -> [v a])
396 --prop_tails = V.tails `eq1` (tails :: v a -> [v a])
397
398
399 testGeneralBoxedVector dummy = concatMap ($ dummy) [
400 testSanity,
401 testPolymorphicFunctions,
402 testOrdFunctions,
403 testTuplyFunctions,
404 testNestedVectorFunctions
405 ]
406
407 testBoolBoxedVector dummy = concatMap ($ dummy)
408 [
409 testGeneralBoxedVector
410 , testBoolFunctions
411 ]
412
413 testNumericBoxedVector dummy = concatMap ($ dummy)
414 [
415 testGeneralBoxedVector
416 , testNumFunctions
417 , testEnumFunctions
418 ]
419
420
421
422 testGeneralPrimitiveVector dummy = concatMap ($ dummy) [
423 testSanity,
424 testPolymorphicFunctions,
425 testOrdFunctions
426 ]
427
428 testBoolPrimitiveVector dummy = concatMap ($ dummy)
429 [
430 testGeneralPrimitiveVector
431 , testBoolFunctions
432 ]
433
434 testNumericPrimitiveVector dummy = concatMap ($ dummy)
435 [
436 testGeneralPrimitiveVector
437 , testNumFunctions
438 , testEnumFunctions
439 ]
440
441
442
443 testGeneralStorableVector dummy = concatMap ($ dummy) [
444 testSanity,
445 testPolymorphicFunctions,
446 testOrdFunctions
447 ]
448
449 testNumericStorableVector dummy = concatMap ($ dummy)
450 [
451 testGeneralStorableVector
452 , testNumFunctions
453 , testEnumFunctions
454 ]
455
456
457
458 testGeneralUnboxedVector dummy = concatMap ($ dummy) [
459 testSanity,
460 testPolymorphicFunctions,
461 testOrdFunctions
462 ]
463
464 testUnitUnboxedVector dummy = concatMap ($ dummy)
465 [
466 testGeneralUnboxedVector
467 ]
468
469 testBoolUnboxedVector dummy = concatMap ($ dummy)
470 [
471 testGeneralUnboxedVector
472 , testBoolFunctions
473 ]
474
475 testNumericUnboxedVector dummy = concatMap ($ dummy)
476 [
477 testGeneralUnboxedVector
478 , testNumFunctions
479 , testEnumFunctions
480 ]
481
482 testTupleUnboxedVector dummy = concatMap ($ dummy)
483 [
484 testGeneralUnboxedVector
485 ]
486
487 tests = [
488 testGroup "Data.Vector.Vector (Bool)" (testBoolBoxedVector (undefined :: Data.Vector.Vector Bool)),
489 testGroup "Data.Vector.Vector (Int)" (testNumericBoxedVector (undefined :: Data.Vector.Vector Int)),
490
491 testGroup "Data.Vector.Primitive.Vector (Int)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Int)),
492 testGroup "Data.Vector.Primitive.Vector (Double)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Double)),
493
494 testGroup "Data.Vector.Storable.Vector (Int)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Int)),
495 testGroup "Data.Vector.Storable.Vector (Double)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Double)),
496
497 testGroup "Data.Vector.Unboxed.Vector ()" (testUnitUnboxedVector (undefined :: Data.Vector.Unboxed.Vector ())),
498 testGroup "Data.Vector.Unboxed.Vector (Int)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Int)),
499 testGroup "Data.Vector.Unboxed.Vector (Double)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Double)),
500 testGroup "Data.Vector.Unboxed.Vector (Int,Bool)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool))),
501 testGroup "Data.Vector.Unboxed.Vector (Int,Bool,Int)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool,Int)))
502
503 ]
504